Questions de cours 1

Définir la convergence simple et la convergence uniforme d'une suite de fonctions.

Définir la convergence simple, la convergence uniforme, et la convergence normale d'une série de fonctions.

Caractère \mathscr{C}^k de la limite d'une suite de fonctions (ou de la somme d'une série de fonctions).

Théorèmes de convergence dominée (suites et séries), et théorème d'intégration terme à terme.

Exercice 1

Étudier selon les valeurs du réel $a \ge 0$, les convergences sur [0; 1] de la suite des fonctions $x \mapsto n^a x^n (1-x)$.

Exercice 2

On note pour tout $n \in \mathbb{N}$, $f_n : x \mapsto nxe^{-nx^2}$.

- 1. Montrer que $\sum f_n$ est simplement convergente sur \mathbb{R} .
- 2. Montrer que sa somme $S = \sum_{n=0}^{+\infty} f_n$ est une fonction impaire.
- 3. Montrer que $\sum f_n$ est normalement convergente sur tout segment de \mathbb{R}^* . Que peut-on en déduire pour S?
- 4. Soit a > 0, calculer $\int_a^x S(t) dt$ pour tout x > 0, et en déduire S.

Exercice 3

On définit sur \mathbb{R} la fonction $f_n: t \mapsto \frac{\mathrm{e}^{-nt^2}}{n^2+1}$, pour tout $n \in \mathbb{N}$.

- 1. Montrer que la fonction $f = \sum_{n=0}^{+\infty} f_n$ est définie sur \mathbb{R} .
- 2. Montrer que f est continue sur \mathbb{R} et qu'elle tend vers 1 en $+\infty$.
- 3. Montrer que f est de classe \mathscr{C}^1 sur \mathbb{R} .

Exercice 4

- 1. Montrer que la série des fonctions $f_n: x \mapsto \frac{1}{n} \arctan\left(\frac{x}{n}\right)$ converge simplement sur \mathbb{R} et que sa somme $S = \sum_{n=1}^{+\infty} f_n$ est continue sur \mathbb{R} .
- 2. Montrer que S est de classe \mathscr{C}^1 sur \mathbb{R} et étudier ses variations.
- 3. Justifier que S tend vers $+\infty$ en $+\infty$.

 Indication : en supposant que cette limite est finie et en minorant la somme par une somme partielle, montrer qu'on obtient une contradiction.

Exercice 5 –

Étudier le mode de convergence sur \mathbb{R}_+^* de la suite des applications $x\mapsto \frac{\sin(nx)}{n\sqrt{x}}$, (on pourra montrer que $t\mapsto \frac{\sin(t)}{\sqrt{t}}$ est bornée sur \mathbb{R}_+^*).

Exercice 6 –

Soit $f \in \mathcal{C}^2(\mathbb{R})$ dont la dérivée seconde est bornée sur \mathbb{R} . Étudier la convergence simple, puis uniforme, sur \mathbb{R} de la suite des fonctions

$$t \mapsto n\left(f\left(t + \frac{1}{n}\right) - f(t)\right).$$

Convergence dominée et autres

Exercice 7

On veut montrer que $\int_0^{+\infty} \frac{\sqrt{t}}{\mathrm{e}^t - 1} \mathrm{d}\, t = \frac{\sqrt{\pi}}{2} \sum_{n=1}^{+\infty} \frac{1}{n\sqrt{n}}.$

- 1. Justifier l'existence des deux membres de cette égalité.
- 2. Montrer que pour tout t > 0, $\frac{\sqrt{t}}{e^t 1} = \sum_{n=1}^{+\infty} \sqrt{t} e^{-nt}$.
- 3. Calculer, à l'aide d'un changement de variable, l'intégrale $\int_0^{+\infty} \sqrt{t} e^{-nt} dt$. (on admettra que $\int_0^{+\infty} e^{-y^2} dy = \frac{\sqrt{\pi}}{2}$).
- 4. Conclure.

Exercice 8

Montrer que pour tout réel a > 0, $\int_0^1 \frac{\mathrm{d} x}{1 + x^a} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{1 + n a}$.

Exercice 9

Établir que
$$\int_0^1 \frac{\arctan(t)}{t} dt = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)^2}$$

Exercice 10 - X-ESPCI

Déterminer la limite de la suite de terme général $\int_0^1 \frac{x^n(1-x^n)}{1-x} dx.$

Exercice 11 – A Centrale PC

Soit $(a_n)_{n\geqslant 0}$ une suite croissante qui tend vers $+\infty$ de réels strictement positifs.

Montrer que

$$\int_0^{+\infty} \left(\sum_{n=0}^{+\infty} (-1)^n e^{-a_n x} \right) dx = \sum_{n=0}^{+\infty} \frac{(-1)^n}{a_n} dx$$

Solutions

Une correction de l'exercice 1

énoncé

- \rightarrow \bigcirc Pour x=1, $f_n(1)=0$ pour tout $n \in \mathbb{N}$, donc $f_n(0) \xrightarrow[n \to +\infty]{} 0$.
 - **⊙** Pour $x \in [0,1[,$

$$f_n(x) = (1-x)n^a e^{n \ln(x)} \xrightarrow[n \to +\infty]{} 0$$
, (par croissances comparées car $\ln(x) < 0$)

Donc la suite (f_n) converge simplement sur [0; 1] vers la fonction nulle.

Pour étudier la convergence uniforme sur [0; 1], on doit étudier la suite de terme général $||f_n - 0||_{\infty}^{[0;1]}$.

Pour cela, on profite de ce que f_n est évidemment dérivable sur $\mathbb R$ pour trop lui dériver sa face :

$$f_n'(x) = n^{a+1}x^{n-1}(1-x) - n^a x^n = n^a x^{n-1}(n(1-x) - x)$$
$$= -n^a(n+1)x^{n-1}\left(x - \frac{n}{n+1}\right).$$

Ainsi, f'_n est positive sur $\left[0; \frac{n}{n+1}\right]$, puis négative, donc f_n est croissante sur $\left[0; \frac{n}{n+1}\right]$, puis décroissante.

Par conséquent, puisque $f_n(0) = f_n(1) = 0$, on déduit des variations de f_n que

$$||f_n||_{\infty}^{[0;1]} = \left| f_n \left(\frac{n}{n+1} \right) \right|$$

$$= n^a \left(\frac{n}{n+1} \right)^n \left(1 - \frac{1}{n+1} \right)$$

$$= \frac{n^a}{n+1} \left(\frac{n}{n+1} \right)^n$$

$$\underset{n \to +\infty}{\sim} n^{a-1} \left(\frac{n}{n+1} \right)^n.$$

Or en passant par l'exponentielle et le logarithme, il est classique que

$$\left(\frac{n}{n+1}\right)^n = \left(\frac{n+1}{n}\right)^{-n} = e^{-n\ln\left(1+\frac{1}{n}\right)} \xrightarrow[n \to +\infty]{} e^{-1}.$$

On en déduit que

$$||f_n||_{\infty}^{[0;1]} \underset{n \to +\infty}{\sim} n^{a-1} \times e^{-1} = \frac{e^{-1}}{n^{1-a}}.$$

Une correction de l'exercice 2

énoncé

- 1. Soit $x \in \mathbb{R}$.
 - \rightarrow si x = 0, la série de terme général $f_n(0) = 0$ converge.
 - \rightarrow si $x \neq 0$, $-x^2 < 0$, donc par croissances comparées $f_n(x) = o\left(\frac{1}{n^2}\right)$, ce qui prouve que $\sum f_n(x)$ converge.

Donc $\sum f_n$ converge simplement sur \mathbb{R} .

2. Pour tout réel x, et tout $n \in \mathbb{N}$, $f_n(-x) = -f_n(x)$ car f_n est impaire, donc pour tout $N \in \mathbb{N}$,

$$\sum_{n=1}^{N} f_n(-x) = -\sum_{n=1}^{N} f_n(x),$$

or par convergence simple de $\sum f_n$ sur \mathbb{R} , les séries de termes généraux $f_n(-x)$ et $f_n(x)$ convergent, donc quand $N \to +\infty$,

$$S(-x) = \sum_{n=1}^{+\infty} f_n(-x) = -\sum_{n=1}^{+\infty} f_n(x) = -S(x),$$

ce qui prouve que S est impaire sur \mathbb{R} .

3. \rightarrow Soit $[a;b] \subset]0; +\infty[$, pour tout $x \in [a;b]$,

$$|f_n(x)| = \left| nxe^{-nx^2} \right| \le nbe^{-na^2}$$

donc $\|f_n\|_{\infty}^{[a;b]} \le nb\mathrm{e}^{-na^2} = o\left(\frac{1}{n^2}\right)$, ce qui prouve que $\sum \|f_n\|_{\infty}^{[a;b]}$ converge.

Il est souvent pertinent d'essayer dans un premier temps de majorer la norme infinie plutôt que de calculer cette norme infinie!

 \rightarrow Puis comme f_n est impaire, alors $|f_n|$ est paire, donc pour tout $[a;b] \subset$ $]-\infty ; 0[, ||f_n||_{\infty}^{[a;b]} = ||f_n||_{\infty}^{[-b;-a]} \le n |a| e^{-nb^2} = o\left(\frac{1}{n^2}\right).$

D'où la convergence normale de $\sum f_n$ sur tout segment de \mathbb{R}^* .

On peut en déduire que la fonction S est continue sur]0; $+\infty[$, car les f_n sont continues sur \mathbb{R} , et $\sum f_n$ est normalement convergente, donc uniformément convergente, sur tout segment de $]0; +\infty[$.

4. Soit a > 0, et x > 0, la série des f_n converge normalement, donc uniformément, sur tout segment de \mathbb{R}^* , donc en particulier sur le segment entre a et x.

Comme de plus, les f_n sont continues sur \mathbb{R} , donc sur ce même segment, on peut intégrer terme à terme sur le segment entre a et x :

$$\begin{split} \int_{a}^{x} S(t) dt &= \int_{a}^{x} \sum_{n=1}^{+\infty} f_{n}(t) dt = \sum_{n=1}^{+\infty} \int_{a}^{x} f_{n}(t) dt & \text{(en intégrant terme à terme)} \\ &= \sum_{n=1}^{+\infty} \int_{a}^{x} nt e^{-nt^{2}} dt = \sum_{n=1}^{+\infty} \left[-\frac{1}{2} e^{-nt^{2}} \right]_{a}^{x} \\ &= -\frac{1}{2} \sum_{n=1}^{+\infty} \left[e^{-nx^{2}} - e^{-na^{2}} \right]. \end{split}$$

Or pour tout t > 0, grâce à la série géométrique :

$$\sum_{n=1}^{+\infty} e^{-nt^2} = \sum_{n=1}^{+\infty} \left(e^{-t^2} \right)^n = \frac{1}{1 - e^{-t^2}} (car \ 0 < e^{-t^2} < 1)$$

donc

$$\int_{a}^{x} S(t) dt = -\frac{1}{2} \left(\frac{1}{1 - e^{-x^{2}}} - \frac{1}{1 - e^{-a^{2}}} \right).$$

Mais par le théorème fondamental de l'analyse, comme S est continue sur]0; $+\infty$ [, on sait que $x \mapsto \int_a^x S(t) dt$ est une primitive de S sur]0; $+\infty$ [, donc pour tout x > 0,

$$S(x) = \frac{d}{dx} \left(\int_{a}^{x} S(t) dt \right) = -\frac{1}{2} \frac{d}{dx} \left(\frac{1}{1 - e^{-x^{2}}} - \frac{1}{1 - e^{-a^{2}}} \right)$$
$$= -\frac{1}{2} \times \left(+\frac{-2xe^{-x^{2}}}{\left(1 - e^{-x^{2}}\right)^{2}} \right) = \frac{xe^{-x^{2}}}{\left(1 - e^{-x^{2}}\right)^{2}}.$$

Puis par imparité de S, pour tout x < 0,

$$S(x) = -S(-x) = -\frac{(-x)e^{-(-x)^2}}{\left(1 - e^{-(-x)^2}\right)^2}$$
 (par le calcul ci-dessus)
=
$$\frac{xe^{-x^2}}{\left(1 - e^{-x^2}\right)^2}.$$

Et comme on sait que S(0) = 0, cette expression est finalement valable pour tout réel x, autrement dit

$$\forall x \in \mathbb{R}, \ \sum_{n=0}^{+\infty} nx e^{-nx^2} = \frac{x e^{-x^2}}{\left(1 - e^{-x^2}\right)^2}.$$

Le résultat ci-dessus n'est pas miraculeux puisque grâce à notre connaissance de la première dérivée de la série géométrique, pour $x \neq 0$

$$\sum_{n=0}^{+\infty} nx e^{-nx^2} = x \times \sum_{n=0}^{+\infty} n \left(e^{-x^2} \right)^n = x e^{-x^2} \times \sum_{n=0}^{+\infty} n \left(e^{-x^2} \right)^{n-1}$$
$$= x e^{-x^2} \times \frac{1}{\left(1 - e^{-x^2} \right)^2} = \frac{x e^{-x^2}}{\left(1 - e^{-x^2} \right)^2}.$$

Une correction de l'exercice 3

énoncé

1. Pour tout $n \in \mathbb{N}$ et tout $t \in \mathbb{R}$,

$$|f_n(t)| = \left| \frac{e^{-nt^2}}{n^2 + 1} \right| \le \frac{1}{n^2 + 1} \le \frac{1}{n^2}.$$

Donc la fonction f_n est bornée sur \mathbb{R} , avec $\|f_n\|_{\infty}^{\mathbb{R}} \leq \frac{1}{n^2}$. Or la suite de Riemann de terme général $\frac{1}{n^2}$ est sommable, donc par majoration, la suite de terme général $\|f_n\|_{\infty}^{\mathbb{R}}$ est aussi sommable, ce qui prouve que la série de fonctions $\sum f_n$ converge normalement, et a fortiori simplement, sur \mathbb{R} .

On peut en déduire entre autres que pour tout $t \in \mathbb{R}$, $\sum_{n=0}^{+\infty} f_n(t)$ existe, donc que la fonction $\sum_{n=0}^{+\infty} f_n$ est définie sur \mathbb{R} .

2. La fonction f_n est continue sur \mathbb{R} , et on vient de voir que $\sum f_n$ converge normalement sur \mathbb{R} , donc la fonction $f = \sum_{n=0}^{+\infty} f_n$ est continue sur \mathbb{R} .

De même, la convergence uniforme sur $\mathbb R$ permet d'appliquer en $+\infty$ le théorème de la double limite, qui nous donne

$$\lim_{t \to +\infty} \sum_{n=0}^{+\infty} f_n(t) = \sum_{n=0}^{+\infty} \lim_{t \to +\infty} f_n(t) = 1 + \sum_{n=1}^{+\infty} 0 = 1.$$

3. Pour tout $n \in \mathbb{N}$, f_n est \mathscr{C}^1 sur \mathbb{R} de dérivée

$$f_n'(t) = \frac{-2n t e^{-n t^2}}{n^2 + 1}$$

elle-même dérivable et de dérivée

$$f_n''(t) = \frac{(4n^2t^2 - 2n)e^{-nt^2}}{n^2 + 1} = \left(t^2 - \frac{1}{2n}\right) \frac{4n^2e^{-nt^2}}{n^2 + 1}.$$

Une étude rapide montre alors que

$$||f_n'||_{\infty}^{\mathbb{R}} = \left|f_n'\left(\frac{1}{\sqrt{2n}}\right)\right| = \frac{\sqrt{2n}}{n^2 + 1}e^{-1/2}.$$

On remarque alors que

$$\|f_n'\|_{\infty}^{\mathbb{R}} \underset{n \to +\infty}{\sim} \frac{1}{n^{3/2}} \sqrt{2} e^{-1/2} \underset{n \to +\infty}{=} O\left(\frac{1}{n^{3/2}}\right),$$

et la série de Riemann $\sum \frac{1}{n^{3/2}}$ converge, donc par domination $\sum \|f_n'\|_{\infty}^{\mathbb{R}}$ converge aussi, ce qui prouve que la série de fonctions $\sum f_n'$ converge normalement sur \mathbb{R} .

Je vous laisse utiliser ce résultat dans le théorème de dérivation terme à terme pour conclure que $f = \sum_{n=0}^{+\infty} f_n$ est \mathscr{C}^1 de dérivée

$$f' = \sum_{n=0}^{+\infty} f'_n : t \mapsto -\sum_{n=0}^{+\infty} \frac{2n \, t e^{-n \, t^2}}{n^2 + 1}$$

Une correction de l'exercice 4

énoncé

1. \rightarrow Pour tout réel x, on déduit de $\arctan(\square) \underset{\square \to 0}{\sim} \square$ que

$$f_n(x) \underset{n \to +\infty}{\sim} \frac{1}{n} \times \frac{x}{n} = O\left(\frac{1}{n^2}\right),$$

d'où par domination la sommabilité de la suite de terme général $f_n(x)$, donc la convergence de la série de terme général $f_n(x)$.

Par conséquent, la série des fonctions f_n converge simplement sur \mathbb{R} .

La fonction arctan est croissante sur \mathbb{R} et impaire, donc pour tout réel a > 0,

$$||f_n||_{\infty}^{[-a\,;\,a]}=|f_n(a)|$$

dont on vient de voir ci-dessus que c'est le terme général d'une suite sommable. Ainsi $\sum f_n$ converge normalement sur tout intervalle de la forme $[-a \; ; \; a]$, donc comme tout segment de $\mathbb R$ peut être plongé dans un tel intervalle, on peut conclure que $\sum f_n$ est normalement convergente sur tout segment de $\mathbb R$.

Ainsi $\sum f_n$ converge uniformément sur tout segment de \mathbb{R} , or toutes les fonctions f_n sont continues sur \mathbb{R} , donc la continuité se prolongeant

à la limite uniforme, on peut conclure que $S = \sum_{n=1}^{+\infty} f_n$ est une fonction continue sur \mathbb{R} .

2. Toutes les fonctions f_n sont \mathscr{C}^1 sur \mathbb{R} , de derivées

$$f'_n: x \mapsto \frac{1}{n} \times \frac{1}{n} \frac{1}{1 + \left(\frac{x}{n}\right)^2} = \frac{1}{n^2} \times \frac{1}{1 + \left(\frac{x}{n}\right)^2},$$

donc $||f_n'||_{\infty}^{\mathbb{R}} \leq \frac{1}{n^2}$, ce qui prouve que $\sum f_n'$ est normalement convergente sur \mathbb{R} .

Les autres conditions théorème de dérivation terme à terme des sommes de séries de fonctions sont vérifiées, donc S est \mathscr{C}^1 sur \mathbb{R} , de dérivée $S': x \mapsto \sum_{n=1}^{+\infty} \frac{1}{n^2+x^2}$.

Cette dérivée est strictement positive sur \mathbb{R} , donc S est strictement croissante sur \mathbb{R} .

- 3. Grâce au théorème de la limite monotone, on déduit de sa croissance que S admet une limite en $+\infty$, cette limite pouvant être finie ou infinie.
 - Supposons que cette limite est un réel ℓ , alors, toujours par le théorème de la limite monotone, ℓ est le plus petit des majorants de la fonction croissante S.

De plus, les fonctions f_n sont positives sur $[0; +\infty[$, croissante, donc pour tout réel $x \ge 0$,

$$\forall N \in \mathbb{N}, \ \sum_{n=1}^{N} f_n(x) \leqslant S(x) = \sum_{n=1}^{+\infty} f_n(x) \leqslant \ell.$$

Or pour tout $n \in \mathbb{N}$,

$$f_n(x) = \frac{1}{n} \arctan\left(\frac{x}{n}\right) \xrightarrow[x \to +\infty]{} \frac{1}{n} \frac{\pi}{2},$$

donc

$$\forall N \in \mathbb{N}, \ \sum_{n=1}^{N} f_n(x) \xrightarrow[x \to +\infty]{} \sum_{n=1}^{N} \frac{1}{n} \frac{\pi}{2} = \frac{\pi}{2} \sum_{n=1}^{N} \frac{1}{n}.$$

Maths - PC - Lycée René Cassin - Bayonne - 2024-2025

Ainsi, par conservation des inégalités larges à la limite :

$$\forall N \in \mathbb{N}, \ \frac{\pi}{2} \sum_{n=1}^{N} \frac{1}{n} \leq \ell,$$

ďoù

$$\forall N \in \mathbb{N}, \ \sum_{n=1}^{N} \frac{1}{n} \leq \frac{2\ell}{\pi}.$$

Ainsi la série harmonique $\sum \frac{1}{n}$, qui est une série à termes positifs, a toutes ses sommes partielles majorées, ce qui entraı̂ne que la série $\sum \frac{1}{n}$ converge...

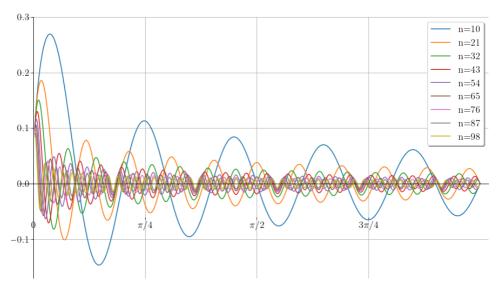
Mais! Par la peste! Mon sang ne fait qu'un tour! La série harmonique est divergente, parbleu!

On a donc prouvé par l'absurde que la limite de S en $+\infty$ n'est pas finie, donc cette limite est $+\infty$.

Une correction de l'exercice 5

énoncé

D'abord un petit dessin, qui n'est pas franchement éclairant, mais j'aime bien les petits graphiques avec Python et matplotlib.



- \rightarrow \bigcirc Pour x = 0, $f_n(0) = 0 \xrightarrow[n \to +\infty]{} 0$.

$$|f_n(x)| \leqslant \frac{1}{n\sqrt{x}},$$

donc par domination $f_n(x) \xrightarrow[n \to +\infty]{} 0$.

Ainsi la suite f_n converge simplement vers la fonction nulle sur]0; $+\infty[$.

- Pour étudier la convergence uniforme,
 - \odot on remarque d'abord que pour tout x > 0,

$$f_n(x) = \frac{1}{\sqrt{n}} \frac{\sin(nx)}{\sqrt{nx}} = \frac{1}{\sqrt{n}} g(nx),$$

où g est la fonction

$$x \mapsto \frac{\sin x}{\sqrt{x}}$$
.

→ Prouvons que g est bornée :

Maths - PC - Lycée René Cassin - Bayonne - 2024-2025

- \rightarrow d'abord, g est continue sur $]0, +\infty[$,
- → de plus la fonction sin est bornée sur \mathbb{R} , donc $\sin(x) = \underset{x \to +\infty}{\mathrm{O}}(1)$, et par conséquent $\frac{\sin(x)}{\sqrt{x}} = \underset{x \to +\infty}{\mathrm{O}} \left(\frac{1}{\sqrt{x}}\right)$, d'où par domination, $g(x) \xrightarrow{x \to +\infty} 0$,
- → d'autre part en 0, $\sin(x) \sim x$, donc $g(x) \sim \sqrt{x}$, d'où par équivalence $g(x) \longrightarrow 0$.

La fonction g est continue sur]0; $+\infty[$ et admet des limites finies en 0 et $+\infty$, donc elle est bornée sur]0; $+\infty[$.

En vérité, ce théorème n'est pas officiellement au programme, il vaut donc mieux savoir le prouver :

 \Rightarrow la fonction g tend vers 0 en 0 (à droite) et en $+\infty$, donc par définition de la limite (en prenant $\epsilon=1$), il existe un réel $\delta>0$ et un réel A tels que

$$\forall t \in [A; +\infty[, |g(t)| \le 1,$$

$$\forall t \in]0; \delta], |g(t)| \le 1,$$

donc g est bornée sur les intervalles]0 ; δ] et [A ; $+\infty$ [.

Puis par le théorème des bornes atteintes, g est continue sur le segment [δ; A], donc elle est bornée sur ce segment (et elle atteint ses bornes mais ici on s'en fiche).

On peut conclure que g est bornée sur]0; $+\infty[$.

 Θ Notons alors $M = \|g\|_{\infty}^{[0; +\infty[}$. On en déduit alors que pour tout $n \in \mathbb{N}^*$

$$\forall x > 0, \ |f_n(x)| \le \frac{1}{\sqrt{n}} \times M$$

et $f_n(0) = 0$, donc

$$\forall x > 0, \ |f_n(x)| \le \frac{1}{\sqrt{n}} \times M$$

d'où

$$||f_n||_{\infty}^{]0;+\infty[} \leqslant \frac{\mathrm{M}}{\sqrt{n}},$$

ce qui prouve la convergence uniforme vers la fonction nulle de la suite $(f_n)_{n\in\mathbb{N}^*}$.

Une correction de l'exercice 6

énoncé

f est dérivable donc f(x+h) = f(x) + hf'(x) + o(h). Ainsi, pour tout $x \in \mathbb{R}$,

$$\varphi_n(x) = n\left(f\left(x + \frac{1}{n}\right) - f(x)\right) \underset{n \to +\infty}{=} f'(x) + o(1)$$

La suite de fonctions $(\varphi_n)_{n\in\mathbb{N}^*}$ converge ainsi simplement sur \mathbb{R} vers f'. f étant de classe \mathscr{C}^2 et f'' bornée, l'inégalité de Taylor-Lagrange nous permet d'écrire pour tous $a, b \in \mathbb{R}$,

$$|f(b) - f(a) - (b - a)f'(a)| \le \frac{(b - a)^2}{2} ||f''||_{\infty}^{\mathbb{R}}$$

L'inégalité devient ici, pour tous $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$,

$$\left| f\left(x + \frac{1}{n}\right) - f(x) - \frac{f'(x)}{n} \right| \le \frac{\left\| f'' \right\|_{\infty}^{\mathbb{R}}}{2n^2}$$

Ainsi, $\left| \varphi_n(x) - f'(x) \right| \leq \frac{\left\| f'' \right\|_{\infty}^{\mathbb{R}}}{2n}$ et donc,

$$\|\varphi_n - f'\|_{\infty}^{\mathbb{R}} \leqslant \frac{\|f''\|_{\infty}^{\mathbb{R}}}{2n} \underset{n \to +\infty}{\longrightarrow} 0$$

La convergence est bien uniforme.

Une correction de l'exercice 7

énoncé

1. Je vais limiter la rédaction au strict nécessaire, mais pas suffisant.

Pour l'intégrale :

 \rightarrow la fonction $t \mapsto \frac{\sqrt{t}}{e^t - 1}$ est continue sur]0; $+\infty[$,

$$\stackrel{\bullet}{\longrightarrow} \frac{\sqrt{t}}{e^t - 1} \underset{t \to +\infty}{\sim} \sqrt{t} e^{-t} = \underset{t \to +\infty}{\circ} \frac{1}{t^2},$$

$$\stackrel{\checkmark}{\longrightarrow} \frac{\sqrt{t}}{e^t - 1} \underset{t \to 0}{\sim} \frac{\sqrt{t}}{t} = \frac{1}{t^{1/2}},$$

donc $t\mapsto \frac{\sqrt{t}}{e^t-1}$ est intégrable sur]0 ; $+\infty$ [.

Pour la série, $\frac{1}{n\sqrt{n}} = \frac{1}{n^{3/2}}$ est une suite de Riemann sommable.

2. Pour tout t > 0,

$$\begin{split} \frac{\sqrt{t}}{e^{t} - 1} &= \frac{\sqrt{t}}{e^{t}} \times \frac{1}{1 - e^{-t}} \\ &= \frac{\sqrt{t}}{e^{t}} \times \sum_{n=0}^{+\infty} \left(e^{-t} \right)^{n} \ (car \ t > 0, \ donc \ \left| e^{-t} \right| < 1) \\ &= \sum_{n=0}^{+\infty} \sqrt{t} e^{-t - nt} = \sum_{n=0}^{+\infty} \sqrt{t} e^{-(n+1)t} \\ &= \sum_{n=1}^{+\infty} \sqrt{t} e^{-nt}. \end{split}$$

- 3. Soit $n \in \mathbb{N}^*$,
 - ⇒ la fonction $f_n: t \mapsto \sqrt{t} e^{-nt}$ est continue sur $[0; +\infty[$, et, par croissances comparées, négligeable devant $\frac{1}{t^2}$ en $+\infty$, donc elle est intégrable sur $[0; +\infty[$.
 - On va poser $y^2 = nt$, c'est-à-dire $y = \sqrt{nt}$, ou encore $t = \frac{1}{n}y^2$.

La fonction $y\mapsto \frac{1}{n}y^2$ est \mathscr{C}^1 strictement croissante sur $[0;+\infty[$, et réalise une bijection de $[0;+\infty[$ sur $[0;+\infty[$, donc on peut effectuer le changement de variables $t=\frac{1}{n}y^2$, qui donne $\sqrt{t}=\frac{1}{\sqrt{n}}y$, et $\mathrm{d}\,t=\frac{1}{n}2y\mathrm{d}\,y$, d'où

$$\int_0^{+\infty} \sqrt{t} e^{-nt} dt = \frac{2}{n\sqrt{n}} \int_0^{+\infty} y^2 e^{-y^2} dy,$$

puis en posant u(y) = y et $v(y) = -\frac{1}{2}e^{-y^2}$

- \odot qui sont des fonctions de classe \mathscr{C}^1 sur $[0; +\infty[$,
- \odot et dont le produit tend vers 0, par croissances comparées, en $+\infty$, on effectue une intégration par parties qui donne

$$\int_{0}^{+\infty} y^{2} e^{-y^{2}} dy = \int_{0}^{+\infty} u \times v' = \left[u \times v \right]_{0}^{+\infty} - \int_{0}^{+\infty} u' \times v$$

$$= 0 - 0 + \frac{1}{2} \int_{0}^{+\infty} e^{-y^{2}} dy$$

$$= \frac{\sqrt{\pi}}{4},$$

ainsi

$$\int_0^{+\infty} \sqrt{t} e^{-nt} dt = \frac{\sqrt{\pi}}{2n\sqrt{n}}$$

4. On constate que la série de terme général $\int_0^{+\infty} |f_n|$ est convergente, car

$$\int_0^{+\infty} |f_n| = \int_0^{+\infty} \sqrt{t} e^{-nt} dt = \frac{\sqrt{\pi}}{2n\sqrt{n}} \underset{n \to +\infty}{=} o\left(\frac{1}{n^{3/2}}\right).$$

et je vous laisse vérifier les autres conditions du théorème d'intégration terme à terme, dont la simple application donne l'égalité voulue.

Une correction de l'exercice 8

énoncé

Pour tout $x \in [0; 1[, |-x^a| = |x^a| < 1 \text{ car } a > 0, \text{ donc}]$

$$\frac{1}{1+x^a} = \frac{1}{1-(-x^a)} = \sum_{n=0}^{+\infty} (-x^a)^n = \sum_{n=0}^{+\infty} (-1)^n x^{na},$$

donc

$$\int_0^1 \frac{\mathrm{d}x}{1+x^a} = \int_0^1 \sum_{n=0}^{+\infty} (-1)^n x^{na} \, \mathrm{d}x$$

et on va prouver qu'on peut intégrer terme à terme.

On note pour tout $n \in \mathbb{N}$ et tout $x \in [0; 1[, f_n(x) = (-1)^n x^{na}]$ et on applique le théorème de convergence dominée pour les séries. Je ne détaille que l'inégalité de domination :

pour tout $x \in [0; 1[$, et tout $N \in \mathbb{N}$,

$$\left| \sum_{n=0}^{N} (-1)^n x^{na} \right| = \left| \sum_{n=0}^{N} (-x^a)^n \right| = \left| \frac{1 - (-x^a)^{N+1}}{1 + x^a} \right| \le \frac{2}{1 + x^a},$$

et $x \mapsto \frac{2}{1+x^a}$ est continue sur le segment [0; 1], donc a fortiori intégrable sur [0; 1], c.q.f.d.

En général, on commence par essayer d'appliquer le théorème d'intégration terme à terme (car il est souvent compliqué d'évaluer les sommes partielles pour pouvoir les majorer) mais ici ce théorème ne s'applique pas car :

$$\int_0^1 |f_n(x)| \, \mathrm{d} \, x = \int_0^1 |(-1)^n x^{na}| \, \mathrm{d} \, x = \int_0^1 x^{na} \, \mathrm{d} \, x = \frac{1}{na+1},$$

qui n'est pas sommable.

Après vérification des autres conditions, on applique le théorème de convergence dominée qui nous permet d'intégrer terme à terme :

$$\int_0^1 \frac{\mathrm{d}x}{1+x^a} = \int_0^1 \sum_{n=0}^{+\infty} (-1)^n x^{na} \, \mathrm{d}x$$
$$= \sum_{n=0}^{+\infty} (-1)^n \int_0^1 x^{na} \, \mathrm{d}x$$
$$= \sum_{n=0}^{+\infty} \frac{(-1)^n}{1+na}, \text{ c.q.f.d.}$$

Une correction de l'exercice 9

énoncé

On applique le théorème d'intégration terme à terme avec en particulier

$$\forall t \in [0; 1[, \frac{\arctan(t)}{t} = \frac{1}{t} \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} t^{2n+1} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} t^{2n},$$

et

$$\int_0^1 \left| \frac{(-1)^n}{2n+1} t^{2n} \right| dt = \frac{1}{2n+1} \int_0^1 t^{2n} dt$$
$$= \frac{1}{(2n+1)^2} = 0 \left(\frac{1}{n^2} \right)$$

donc la série $\sum \int_0^1 \left| \frac{(-1)^n}{2n+1} t^{2n} \right| dt$ converge.

Une correction de l'exercice 10

énoncé

Pour $n \ge 1$, on pose $f_n : x \in [0,1[\mapsto \frac{x^n(1-x^n)}{1-x} = x^n(1+x+x^2+\cdots+x^{n-1}).$ Comme f_n est prolongeable par continuité en 1 (par la valeur n), l'intégrale I_n est faussement impropre, et converge. On propose deux solutions.

Un calcul élémentaire

En développant le produit $x^n(1+x+x^2+\cdots+x^{n-1})$, on obtient $I_n=\sum_{k=1}^n\frac{1}{n+k}=\frac{1}{n}\sum_{k=1}^n\frac{1}{1+k/n}$, qui est une somme de Riemann régulière d'ordre n de la fonction $x\mapsto\frac{1}{1+x}$ sur le segment [0,1]. Le théorème sur les sommes de Riemann dit alors que

$$\lim_{n \to \infty} I_n = \int_0^1 \frac{\mathrm{d}x}{1+x} = \ln 2.$$

On peut aussi reconnaître dans $I_n = \sum_{k=1}^n \frac{1}{n+k}$ la différence $H_{2n} - H_n$ de deux nombres harmoniques. On dispose du développement asymptotique $H_n = \ln n + \gamma + \pm (1)$ quand n tend vers l'infini, issu du théorème de comparaison série intégrale (qui affirme que $\sum w_n$ converge avec $w_n = \int_{n-1}^n f(t) \mathrm{d}t - f(n)$, où f est continue par morceaux, décroissante et positive). On en déduit que $H_{2n} - H_n = \ln(2n) + \gamma - (\ln n + \gamma) + \pm (1) = \ln 2 + \pm (1)$, et on retrouve le même résultat.

• La convergence dominée

La fonction $\varphi : u \in]0,1[\mapsto u^{1/n}$ est de classe \mathscr{C}^1 et bijective et f_n est intégrable sur]0,1[. On peut donc effectuer le changement de variable $x = \varphi(u)$, qui donne

$$I_n = \int_0^1 \frac{u(1-u)}{1-u^{1/n}} \frac{u^{-1+1/n}}{n} du = \int_0^1 \frac{u^{1/n}(1-u)}{n(1-u^{1/n})} du.$$

On pose $g_n : x \in]0,1[\mapsto \frac{u^{1/n}(1-u)}{n(1-u^{1/n})}$. On fixe $u \in]0,1[$.

$$n(1 - u^{1/n}) = n \left(1 - \exp\left(\frac{\ln u}{n}\right) \right)$$

$$\underset{n \to +\infty}{=} n \left(1 - \left(1 + \frac{\ln u}{n} + o\left(\frac{1}{n}\right) \right) \right)$$

$$\underset{n \to +\infty}{=} -\ln u + o(1).$$

La suite (g_n) converge donc simplement vers la fonction $g_n \colon x \in]0,1[\mapsto \frac{u-1}{\ln u}$, qui est continue par morceaux. Par ailleurs,

$$\forall (n,u) \in \mathbb{N}^* \times \]0,1[, \quad |g_n(u)| = u^{1/n} \frac{1 + u^{1/n} + \dots + u^{(n-1)/n}}{n} \leqslant u^{1/n} \leqslant 1.$$

La fonction constante 1 étant continue par morceaux et intégrable sur]0,1[, le théorème de convergence dominée dit que $\lim_{n \to \infty} I_n = \int_0^1 \frac{u-1}{\ln u} du$.

La comparaison des deux méthodes donne l'égalité intéressante

$$\int_0^1 \frac{u-1}{\ln u} \mathrm{d}u = \ln 2.$$

Une correction de l'exercice 11

énoncé

Notons pour tout $n \in \mathbb{N}$ et tout $x \in]0$; $+\infty[, f_n(x) = (-1)^n e^{-a_n x}$

Pour tout $x \in]0$; $+\infty[$, comme $(a_n)_{n \in \mathbb{N}}$ est croissante et tend vers $+\infty$, on montre sans difficulté que la suite de terme général $f_n(x)$ vérifie les

conditions du critère spécial des séries alternées, qui nous permet d'affirmer que la série $\sum f_n(x)$ converge.

Ainsi $\sum f_n$ converge simplement sur]0; $+\infty[$, ce qui justifie que la fonction $x\mapsto \sum_{n=0}^{+\infty}(-1)^n\mathrm{e}^{-a_nx}$ est définie sur]0; $+\infty[$.

- De même, comme $(a_n)_{n\in\mathbb{N}}$ est croissante et tend vers $+\infty$, on montre sans difficulté que la suite de terme général $\frac{(-1)^n}{a_n}$ vérifie les conditions du critère spécial des séries alternées, qui nous donne l'existence de la somme $\sum_{n=0}^{+\infty} \frac{(-1)^n}{a_n}.$
- \rightarrow On remarque que pour tout $n \in \mathbb{N}$,

$$\int_{0}^{+\infty} f_{n}(x) dx = (-1)^{n} \int_{0}^{+\infty} e^{-a_{n}x} dx = \frac{(-1)^{n}}{a_{n}}.$$

La convergence uniforme est inopérante sur l'intervalle d'intégration $]0 ; +\infty[$ qui n'est pas un segment.

On remarque que

$$\int_0^{+\infty} |f_n(x)| \, \mathrm{d}x = \frac{1}{a_n}$$

et rien ne nous permet d'affirmer que $\sum \frac{1}{a_n}$ converge, donc le théorème d'intégration terme à terme ne peut pas s'appliquer.

On va donc appliquer le théorème de convergence dominée pour les séries.

- \odot Il est évident que les fonctions f_n sont continues sur]0; $+\infty[$;
- \odot on a déjà vu que $\sum f_n$ converge simplement sur]0; $+\infty[$,

Maths - PC - Lycée René Cassin - Bayonne - 2024-2025

Pour tout $x \in]0$; $+\infty[$, le critère spécial des séries alternées appliqué à $\sum f_n(x)$ permet d'affirmer que

$$|R_{N}(x)| = \left| \sum_{n=N+1}^{+\infty} f_{n}(x) \right| \le |f_{N+1}(x)| = e^{-a_{N+1}x},$$

et cette fonction $x \mapsto e^{-a_{N+1}x}$ est décroissante, donc pour tout segment $[\alpha; \beta] \subset]0; +\infty[$,

$$\forall x \in [\alpha; \beta], |R_N(x)| \leq e^{-a_{N+1} \times \alpha},$$

ďoù

$$\|R_N\|_{\infty}^{[\alpha;\beta]} \leq e^{-a_{N+1} \times \alpha}$$

ce qui prouve la convergence uniforme sur le segment car $e^{-a_{N+1}\times\alpha} \xrightarrow[N \to +\infty]{} 0.$

Ainsi $\sum f_n$ converge uniformément sur tout segment de]0; $+\infty[$, donc sa somme est continue sur]0; $+\infty[$.