Questions de cours 1

Réponses

Compléter, ou bien cocher la (ou les) bonne(s) réponse(s).

Q1.
$$\sin(a+b) =$$

$$\cos(a+b) = \boxed{}$$

Q2. Sachant que $\frac{\pi}{2} < \theta < \pi$ et que $\tan \theta = -\frac{1}{2}$, donner la valeur $\sin(\theta)$ et une valeur approchée (grossière) de θ en radians :

$$sin(\theta) =$$
;

Q3. Le réel ln(16) vaut :

$$\square$$
 4ln(2),

$$\square$$
 4ln(2), \square 4ln(4), \square (ln 2)⁴, \square 8 ln(2)

$$\Box$$
 $(\ln 2)^4$

Q4. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction quelconque. Laquelle des fonctions suivantes n'est pas forcément paire?

$$\Box x \longmapsto f(\cos x),$$

$$\Box x \longmapsto \cos(f(x)).$$

$$\Box x \longmapsto f(x)f(-x),$$

$$\Box x \longmapsto f(\cos x), \qquad \Box x \longmapsto \cos(f(x)),$$

$$\Box x \longmapsto f(x)f(-x), \qquad \Box x \longmapsto f(x^2).$$

 ${\bf Q5}.$ On suppose que f est dérivable en x_0 , comment définit-on le nombre dérivé $f'(x_0)$?

$$f'(x_0) =$$

06	On considère la fonction	$f \cdot r \mapsto \omega$	cos(2x)
ŲΟ.	On considere la fonction	$J: X \mapsto V$	$\cos(\Delta x)$

- 1. f est dérivable sur $\mathcal{D} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
- 2. $\forall x \in \mathcal{D}, \ f'(x) =$
- **Q7**. 1. Pour tous $p \in \mathbb{N}$ et $x \in \mathbb{R} \setminus \{1\}$,

$$\sum_{i=0}^{2p+1} x^i = \boxed{}$$

- 2. La somme $10 + 11 + \cdots + 100$ vaut :
 - \square 5050, \square 5005, \square 10100, \square 1100, \square $\sin\left(\frac{\pi}{12}\right)$.
- 3. Écrire de deux manières différentes comme une double-somme :

$$\sum_{1\leqslant k\leqslant \ell\leqslant n}u_{k,\ell}=\boxed{}$$

4. Écrire de deux manières différentes comme une double-somme :

$$\sum_{1 \leqslant k < \ell \leqslant n} u_{k,\ell} = \boxed{}$$

Questions de cours 2

Réponses

Compléter, ou bien cocher la (ou les) bonne(s) réponse(s).

Q1. $\sin(a+b) =$

 $\cos(a+b) =$

Q2. $\sin^2\left(\frac{\pi}{8}\right) = ? \quad \Box \quad \frac{2-\sqrt{2}}{4}, \quad \Box \quad \frac{2+\sqrt{2}}{4}, \quad \Box \quad \frac{\sqrt{2}}{2}, \quad \Box \quad \frac{2-\sqrt{3}}{2}.$

Q3. Donner une valeur approchée grossière en radians de $\theta \in \left[-\pi ; -\frac{\pi}{2}\right]$ tel que $\tan(\theta) = \frac{1}{2}$:

 $\theta \simeq$

Q4. Exprimer le nombre $\ln\left(\sqrt[5]{\frac{3}{4}}\right)$ en fonction de $\ln(2)$ et $\ln(3)$;

 $\ln\left(\sqrt[5]{\frac{3}{4}}\right) =
\boxed{
}$

Q5. Soit f une fonction décroissante de \mathbb{R} dans \mathbb{R} . Quelle fonction n'est pas forcément croissante?

 $\Box x \longmapsto f \circ f(x), \qquad \Box x \longmapsto -f(x),$ $\Box x \longmapsto f(-x), \qquad \Box x \longmapsto f(x^2)$

Q6. On suppose que f est dérivable en x_0 , comment définit-on le nombre dérivé $f'(x_0)$?

 $f'(x_0) =$

- **Q7**. On considère la fonction $f: x \mapsto \frac{1}{\tan(2x)}$.
 - 1. f est dérivable sur : $\mathcal{D} =$
 - 2. $\forall x \in \mathcal{D}, \ f'(x) =$
- **Q8**. 1. Soit $n \in \mathbb{N}$, exprimer sans signe somme

$$\sum_{i=0}^{2n-1} i^2 = \boxed{}$$

- 2. Pour tous $p, q \in \mathbb{N}$, que vaut $\sum_{i=p}^{p+q} 2^i$?
 - $\Box \ 2^{p} 2^{p+q+1}, \qquad \Box \ \frac{p \times (p+q) \times (p+q+1)}{6},$ $\Box \ 1 2^{p+q}, \qquad \Box \ \frac{p^{2} \times (p+q)^{2}}{4}.$
- 3. Écrire de deux manières différentes comme une double-somme :

$$\sum_{1 \leqslant k \leqslant \ell \leqslant n} u_{k,\ell} = \boxed{}$$

4. Écrire de deux manières différentes comme une double-somme :

$$\sum_{1\leqslant k<\ell\leqslant n}u_{k,\ell}=\boxed{}$$

Exercice 1

Donner le maximum sur]0 ; 1] de la fonction $x \mapsto |x \ln(x)|$.

Exercice 2

- **Ex 1**. Donner le maximum sur]0; 1] de la fonction $x \mapsto |x \ln(x)|$.
- **Ex 2**. 1. Montrer que la fonction $f: x \mapsto \frac{1}{\sqrt{1-x^2}}$ est dérivable sur [0; 1[, et donner l'expression de sa dérivée.
 - 2. Pour tout $x \in [0; 1[$, donner une égalité liant f'(x) et f(x).
 - 3. En déduire que f est \mathscr{C}^{∞} sur [0; 1[.
 - 4. Déterminer $f^{(n)}(0)$ pour tout $n \in \mathbb{N}$.
- **Ex 3**. Pour tout $n \in \mathbb{N}^*$, on admet que la fonction $f_n : x \mapsto n x^3 + n^2 x 2$ s'annule une seule fois sur \mathbb{R} en un réel noté a_n . Montrer que la suite $(a_n)_{n \in \mathbb{N}}$ est minorée par 0 et décroissante.
- **Ex 4**. Justifier pour tout réel $x \in]-\pi/2$; $\pi/2[$, l'inégalité

$$\cos(x) \le 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4.$$

- **Ex 5**. Pour tous $n, p \in \mathbb{N}^*$ et $a \in \mathbb{R}^*$, étudier $\frac{x^n a^n}{x^p a^p}$ quand x tend vers a.
- **Ex 6.** Calculer la somme $\sum_{k=1}^{n} {n-1 \choose k-1} (-1)^k 2^{n-k}$
- **Ex 7**. Montrer que $k \binom{n}{k} = n \binom{n-1}{k-1}$ et à l'aide de la formule du binôme, en déduire le calcul de la somme

$$\sum_{k=1}^{n} k \binom{n}{k} 2^{k}.$$

- **Ex 8.** Calculer la somme $\sum_{1 \le \ell < k \le n} \frac{\ell}{k(k-1)}$.
- **Ex 9**. Soit *n* un entier naturel, calculer la somme $\sum_{0 \le k \le p \le n} {p \choose k} 3^k$.

Ex 10. 1. En développant $(2k-1)^3$, montrer que pour tout $n \in \mathbb{N}$,

$$\sum_{k=1}^{n} (2k-1)^3 = n^2(2n^2-1).$$

- 2. Retrouver ce résultat en déterminant auparavant la valeur des sommes $\sum_{k=0}^{2n} k^3$ et $\sum_{k=0}^{n} (2k)^3$.
- **Ex 11**. Pour tout $n \in \mathbb{N}^*$, simplifier l'expression $\prod_{k=0}^{n-1} \left(1 + \frac{\binom{n}{k}}{\binom{n}{k+1}}\right)$.
- Ex 12. 1. Déterminer trois réels a, b et c qui vérifient pour entier $k \ge 2$,

$$\frac{1}{(k-1)k(k+1)} = \frac{a}{k-1} + \frac{b}{k} + \frac{c}{k+1}.$$

2. En déduire pour tout $n \ge 2$ la valeur de la somme :

$$\sum_{k=2}^{n} \frac{1}{(k-1)k(k+1)}$$

Réponses aux questions de cours

questions

Q 1.
$$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$$
,
 $\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$.

Q 2. Sachant que $\frac{\pi}{2} < \theta < \pi$ et que $\tan \theta = -\frac{1}{2}$, quelle est la valeur de $\sin(\theta)$?

$$\sin(\theta) = \boxed{\frac{1}{\sqrt{3}}};$$

$$\theta \simeq \boxed{-2,7}$$
.

Q 3. Le réel ln(16) vaut :

$$\checkmark 4\ln(2), \qquad \Box 4\ln(4), \qquad \Box (\ln 2)^4, \qquad \Box 8\ln(2)$$

$$\square$$
 4ln(4),

$$\Box$$
 $(\ln 2)^4$

Q 4. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction quelconque. Laquelle des fonctions suivantes n'est pas forcément paire?

$$\square x \longmapsto f(\cos x),$$

$$x \mapsto \cos(f(x))$$

$$\Box x \longmapsto f(\cos x), \qquad \qquad \checkmark x \longmapsto \cos(f(x)),$$
$$\Box x \longmapsto f(x)f(-x), \qquad \Box x \longmapsto f\left(x^2\right).$$

$$\Box x \mapsto f(x^2).$$

 ${\bf Q}$ 5. On suppose que f est dérivable en x_0 , comment définit-on le nombre dérivé $f'(x_0)$?

$$f'(x_0) = \left[\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}\right].$$

Q 6. On considère la fonction $f: x \mapsto \sqrt{\cos(2x)}$.

1.
$$f$$
 est dérivable sur $\mathscr{D} = \left[\bigcup_{k \in \mathbb{Z}} \left] - \pi + 4k\pi \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k\pi \right] \right] + 4k\pi \left[\bigcup_{k \in \mathbb{Z}} \left[-\pi + 4k$

2.
$$\forall x \in \mathcal{D}, f'(x) = \boxed{-\frac{\sin(2x)}{2\sqrt{\cos(2x)}}}$$

Q 7. 1. Pour tous $p \in \mathbb{N}$ et $x \in \mathbb{R} \setminus \{1\}$,

$$\sum_{i=0}^{2p+1} x^i = \boxed{\frac{1-x^{2p+2}}{1-x}}.$$

2. La somme $10 + 11 + \cdots + 100$ vaut :

$$\checkmark 5050, \quad \Box 5005, \quad \Box 10100, \quad \Box 1100, \quad \Box \sin\left(\frac{\pi}{12}\right).$$

3. Écrire de deux manières différentes comme une double-somme :

$$\sum_{1\leqslant k\leqslant \ell\leqslant n}u_{k,\ell}=\boxed{\sum_{k=1}^n\sum_{\ell=k}^nu_{k,\ell}}=\boxed{\sum_{\ell=1}^n\sum_{k=1}^\ell u_{k,\ell}}.$$

4. Écrire de deux manières différentes comme une double-somme :

$$\sum_{1\leqslant k\leqslant \ell\leqslant n}u_{k,\ell}=\left[\sum_{k=1}^{n-1}\sum_{\ell=k+1}^nu_{k,\ell}\right]=\left[\sum_{\ell=2}^n\sum_{k=1}^{\ell-1}u_{k,\ell}\right].$$

Réponses aux questions de cours

questions

- Q 1. $\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$, $\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$.
- **Q 2**. Quelle est la valeur de $\sin^2\left(\frac{\pi}{8}\right)$?

$$\stackrel{\bullet}{\square} \frac{2-\sqrt{2}}{4}, \qquad \qquad \square \frac{2+\sqrt{2}}{4}, \qquad \qquad \square \frac{\sqrt{2}}{2}, \qquad \qquad \square \frac{2-\sqrt{3}}{2}.$$

On l'obtient grâce à $\sin^2(\theta) = \frac{1}{2}(1 - \cos(2\theta))$.

Q 3. Donner une valeur approchée grossière en radians de $\theta \in \left[-\pi; -\frac{\pi}{2}\right]$ tel que $\tan(\theta) = \frac{1}{2}$:

$$\theta \simeq \boxed{-\frac{6\pi}{7} \simeq -2.7}$$
.

Q 4. Exprimer le nombre $\ln\left(\sqrt[5]{\frac{3}{4}}\right)$ en fonction de $\ln(2)$ et $\ln(3)$;

$$\ln\left(\sqrt[5]{\frac{3}{4}}\right) = \boxed{\frac{1}{5}\left(\ln(3) - 2\ln(2)\right)}.$$

Q 5. Soit f une fonction décroissante de \mathbb{R} dans \mathbb{R} . Quelle fonction n'est pas forcément croissante?

$$\Box x \longmapsto f \circ f(x), \qquad \Box x \longmapsto -f(x),$$

$$\Box x \longmapsto f(-x), \qquad \mathbf{f} x \longmapsto f(x^2)$$

Q 6. On suppose que f est dérivable en x_0 , comment définit-on le nombre dérivé $f'(x_0)$?

$$f'(x_0) = \left[\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \right].$$

- **Q** 7. On considère la fonction $x \mapsto \frac{1}{\tan(2x)}$.
 - 1. f est dérivable sur : $\mathscr{D} = \boxed{\mathbb{R} \setminus \left\{ k \frac{\pi}{4} \right\}}$.
 - 2. L'expression de la dérivée de f est

$$f'(x) = \boxed{\frac{2}{\cos^2(2x)}}.$$

Q 8. 1. Soit $n \in \mathbb{N}$, exprimer sans signe somme

$$\sum_{i=0}^{2n-1} i^2 = \left[\frac{(2n-1)(2n)(4n-1)}{6} \right]$$

2. Pour tous $p, q \in \mathbb{N}$, que vaut $\sum_{i=p}^{p+q} 2^i$?

3. Écrire de deux manières différentes comme une double-somme :

$$\sum_{1\leqslant k\leqslant \ell\leqslant n}u_{k,\ell}=\boxed{\sum_{k=1}^n\sum_{\ell=k}^nu_{k,\ell}}=\boxed{\sum_{\ell=1}^n\sum_{k=1}^\ell u_{k,\ell}}.$$

4. Écrire de deux manières différentes comme une double-somme :

$$\sum_{1 \leqslant k \leqslant \ell \leqslant n} u_{k,\ell} = \left[\sum_{k=1}^{n-1} \sum_{\ell=k+1}^{n} u_{k,\ell} \right] = \left[\sum_{\ell=2}^{n} \sum_{k=1}^{\ell-1} u_{k,\ell} \right]$$