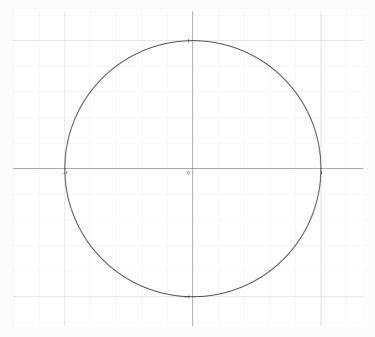
Colles de la semaine 6. Nom et prénom?

Questions de cours 1

Réponses

Q1. Placer dans le dessin ci-dessous les nombres $e^{i\frac{47\pi}{4}}$, $e^{-i\frac{15\pi}{7}}$, i^{-22} , et j^{85} :



Q2. Pour tout $n \in \mathbb{N}^*$, compléter :

$$z^n = 1 \Longleftrightarrow z \in \left\{ \boxed{ \qquad } \mid k \in \boxed{ } \right\}.$$

soit $\alpha \in \mathbb{C}^*$, compléter :

$$z^n = \alpha^n \iff \exists k \in$$
 tel que $z =$

Résoudre dans \mathbb{C} l'équation $z^4 = i$:

$$z^4 = i \Longleftrightarrow z \in \left\{ \boxed{} \right.$$

Q3. Compléter ch : $x \mapsto$, sh : $x \mapsto$

Q4.	Soit f une fonction de classe \mathscr{C}^2 sur un intervalle I, compléter
	f est convexe sur I si, et seulement si,
	Dans ce cas, si $a \in I$, compléter avec des expressions qui dépendent de a et x :
	$\forall x \in I,$ $\leq f(x) \leq f(x)$
Q5.	Compléter : $\arccos\left(\cos\left(-\frac{7\pi}{13}\right)\right) =$
Q6.	Donner le théorème fondamental de l'analyse :
	Soit f une fonction de classe \mathscr{C}^1 sur $I = [1; 7]$, donner pour tout $x \in I$ une expression de $f(x)$ à l'aide d'une intégrale et de f' :

Colles de la semaine 6. Nom et prénom?

Exercice 1

Calculer les sommes $\sum_{k=0}^{n} \cos(a+k\theta)$ et $\sum_{k=0}^{n} \sin(a+k\theta)$ où a et θ sont des réels, et n est un entier naturel.

Exercice 2

Calculer les sommes $\sum_{k=0}^{n} \binom{n}{k} \cos(a+k\theta)$ et $\sum_{k=0}^{n} \binom{n}{k} \sin(a+k\theta)$ où a et θ sont des réels, et n est un entier naturel.

Exercice 3

Résoudre dans \mathbb{C} l'équation

$$\left(\frac{z+i}{z-i}\right)^4 - \left(\frac{z+i}{z-i}\right)^3 + \left(\frac{z+i}{z-i}\right)^2 - \left(\frac{z+i}{z-i}\right) + 1 = 0.$$

Exercice 4

Soit $n \in \mathbb{N}^*$. On considère l'équation $(z+i)^n = (z-i)^n$.

- 1. Montrer que si z est une solution de cette équation, alors z est un réel.
- 2. Résoudre cette équation, en exprimant les solutions à l'aide de la fonction cotangente.
- 3. On suppose dans cette question que n = 5.
 - 1. Retrouver les solutions de l'équation $(z+i)^5 = (z-i)^5$ en développant, et en utilisant la résolution d'une équation du second degré.
 - 2. En déduire les valeurs exactes (sous forme d'expressions utilisant des radicaux $\sqrt{\ }$) de

$$\cot\left(\frac{\pi}{5}\right)$$
, $\tan\left(\frac{\pi}{5}\right)$, $\cos\left(\frac{\pi}{5}\right)$, $\sin\left(\frac{\pi}{5}\right)$

Exercice 5

Montrer que pour tout $x \in [0, \frac{\pi}{2}], \frac{2}{\pi}x \leq \sin(x) \leq x$.

Exercice 6

Montrer que pour tout $x \in [0; 1], 1+x \le e^x \le 1+(e-1)$.

Exercice 7

Soient x_1, \ldots, x_n n réels de $[0, \pi]$. Montrer que $\sum_{k=1}^n \sin x_k \le n \sin \left(\frac{1}{n} \sum_{k=1}^n x_k\right)$.

Exercice 8

- 1. Sur quel intervalle I la fonction $f: x \mapsto -\ln(\ln x)$ est-elle de classe \mathscr{C}^{∞} ?
- 2. Montrer que f est convexe sur I.
- 3. En déduire pour tous réels x et y de I l'inégalité

$$\ln\left(\frac{x+y}{2}\right) \geqslant \sqrt{\ln(x)\ln(y)}.$$

.

Réponses aux questions de cours

questions

Q 1.

$$\begin{split} & \mathrm{e}^{i\,\frac{47\pi}{4}} = \mathrm{e}^{i\,\left(11\pi + \frac{\pi}{4}\right)} = -\mathrm{e}^{i\,\frac{\pi}{4}} = \mathrm{e}^{i\,\frac{5\pi}{4}}, \\ & \mathrm{e}^{-i\,\frac{15\pi}{7}} = \mathrm{e}^{-i\,\left(2\pi + \frac{\pi}{7}\right)} = \mathrm{e}^{-i\,\frac{\pi}{7}}, \\ & i^{-22} = \left(i^2\right)^{-11} = (-1)^{-11} = -1, \\ & j^{85} = j^{3\times28+1} = \left(j^3\right)^{28} \times j = 1^{28} \times j = j. \end{split}$$

Je vous laisse les placer sur le cercle trigonométrique.

Q 2. Pour tout $n \in \mathbb{N}^*$, Compléter :

$$z^n = 1 \Longleftrightarrow z \in \left\{ \boxed{ \operatorname{e}^{i \, k \frac{2\pi}{n}} } \mid k \in \boxed{ \llbracket 0 \ ; \ n-1 \rrbracket } \right\}.$$

soit $\alpha \in \mathbb{C}^*$, compléter :

$$z^n = \alpha^n \iff \exists k \in \llbracket 0 ; n-1 \rrbracket \text{ tel que } z = \boxed{\alpha \times e^{i k \frac{2\pi}{n}}}$$

Résoudre dans \mathbb{C} l'équation $z^4 = i$:

$$z^{4} = i \iff z^{4} = \left(e^{i\frac{\pi}{8}}\right)^{4} \iff \exists k \in [0; 3], \ z = e^{i\frac{\pi}{8}} \times e^{ik\frac{\pi}{2}}$$
$$\iff z \in \left\{e^{i\frac{\pi}{8}}, -e^{i\frac{\pi}{8}}, i \times e^{i\frac{\pi}{8}}, -i \times e^{i\frac{\pi}{8}}\right\} = \left\{e^{i\frac{\pi}{8}}, -e^{i\frac{\pi}{8}}, e^{i\frac{5\pi}{8}}, -e^{i\frac{5\pi}{8}}\right\}.$$

Q 3. Soit f une fonction de classe \mathscr{C}^2 sur un intervalle I, compléter

$$f$$
 est convexe sur I si, et seulement si, $f'' \geqslant 0$ sur I.

Dans ce cas, si $a \in I$, compléter avec des expressions qui dépendent de a et x :

$$\forall x \in I, \quad f(a) + f'(a)(x - a) \le f(x) \le f(a) + \frac{f(b) - f(a)}{b - a}(x - a).$$

- **Q 4**. Compléter: $\arccos\left(\cos\left(-\frac{7\pi}{13}\right)\right) = \boxed{\frac{6\pi}{13}}$
- Q 5. Donner le théorème fondamental de l'analyse :

Si f est continue sur I alors pour tout $a \in I$, $x \mapsto \int_a^x f(t) dt$ est une primitive de f sur I, et c'est la seule qui s'annule en a.

Maths - PCSI - Lycée René Cassin - Bayonne - 2024-2025

Soit f une fonction de classe \mathscr{C}^1 sur I = [1; 7], donner pour tout $x \in I$ une expression de f(x) à l'aide d'une intégrale et de f':

$$\forall x \in I, \ f(x) = f(5,78) + \int_{5,78}^{x} f'(t) dt$$

Une correction de l'exercice 1

énoncé

Notons respectivement S_n et T_n ces deux sommes, alors

$$S_n + i T_n = \sum_{k=0}^n e^{i(a+k\theta)},$$

autrement dit S_n et T_n sont respectivement la partie réelle et la partie imaginaire de la somme $\sum_{i=0}^{n} e^{i(a+k\theta)}$.

Remarquons d'abord que si θ est un multiple de 2π , alors $\cos(a+k\theta)=\cos(a)$ et $\sin(a+k\theta)=\sin(a)$, donc dans ce cas $S_n=(n+1)\cos(a)$ et $T_n=(n+1)\sin(a)$.

Sinon, θ n'est pas un multiple de 2π , et par conséquent $e^{i\theta}$ est différent de

Colles de la semaine 6. Nom et prénom?

1, ainsi

$$\begin{split} & \mathbf{U}_{n} = \sum_{k=0}^{n} \mathrm{e}^{ia} \times \left(\mathrm{e}^{i\theta} \right)^{k} = \mathrm{e}^{ia} \sum_{k=0}^{n} \left(\mathrm{e}^{i\theta} \right)^{k} = \mathrm{e}^{ia} \times \frac{1 - \left(\mathrm{e}^{i\theta} \right)^{n+1}}{1 - \mathrm{e}^{i\theta}} \ \, (car \ \mathrm{e}^{i\theta} \neq 1) \\ & = \mathrm{e}^{ia} \times \frac{1 - \mathrm{e}^{i(n+1)\theta}}{1 - \mathrm{e}^{i\theta}} \\ & = \mathrm{e}^{ia} \times \frac{\mathrm{e}^{i(n+1)\frac{\theta}{2}} \left(\mathrm{e}^{-i(n+1)\frac{\theta}{2}} - \mathrm{e}^{i(n+1)\frac{\theta}{2}} \right)}{\mathrm{e}^{i\frac{\theta}{2}} \left(\mathrm{e}^{-i\frac{\theta}{2}} - \mathrm{e}^{i\frac{\theta}{2}} \right)} \ \, (c'est \ l' \land argument-moitié \,) \\ & = \mathrm{e}^{ia} \times \frac{\mathrm{e}^{i(n+1)\frac{\theta}{2}} \left(-2i\sin(n+1)\frac{\theta}{2} \right)}{\mathrm{e}^{i\frac{\theta}{2}} \left(-2i\sin(n+1)\frac{\theta}{2} \right)} \\ & = \mathrm{e}^{i(a+(n+1)\frac{\theta}{2} - \frac{\theta}{2})} \times \frac{\sin(n+1)\frac{\theta}{2}}{\sin\frac{\theta}{2}} = \mathrm{e}^{i(a+n\frac{\theta}{2})} \times \frac{\sin(n+1)\frac{\theta}{2}}{\sin\frac{\theta}{2}} \\ & = \left(\cos(a+n\frac{\theta}{2}) + i\sin(a+n\frac{\theta}{2}) \right) \times \frac{\sin(n+1)\frac{\theta}{2}}{\sin\frac{\theta}{2}} \end{split}$$

donc
$$S_n = \cos(a + n\frac{\theta}{2}) \times \frac{\sin(n+1)\frac{\theta}{2}}{\sin\frac{\theta}{2}}$$
 et $T_n = \sin(a + n\frac{\theta}{2}) \times \frac{\sin(n+1)\frac{\theta}{2}}{\sin\frac{\theta}{2}}$.

Une correction de l'exercice 2

énoncé

Notons respectivement S_n et T_n ces deux sommes, alors comme dans l'exercice précédent S_n et T_n sont la partie réelle et la partie imaginaire de la somme $U_n = \sum_{k=0}^{n} \binom{n}{k} e^{i(\alpha + k\theta)}$.

Or

$$\begin{split} \mathbf{U}_{n} &= \sum_{k=0}^{n} \binom{n}{k} \mathrm{e}^{ia} \times \left(\mathrm{e}^{i\theta} \right)^{k} = \mathrm{e}^{ia} \sum_{k=0}^{n} \binom{n}{k} \left(\mathrm{e}^{i\theta} \right)^{k} = \mathrm{e}^{ia} \times \left(1 + \mathrm{e}^{i\theta} \right)^{n} \\ &= \mathrm{e}^{ia} \times \left(\mathrm{e}^{i\frac{\theta}{2}} \left(\mathrm{e}^{-i\frac{\theta}{2}} + \mathrm{e}^{i\frac{\theta}{2}} \right) \right)^{n} \quad (avec \ l' \land argument-moiti\'{e} \ ") \\ &= \mathrm{e}^{ia} \times \mathrm{e}^{in\frac{\theta}{2}} \left(2\cos\frac{\theta}{2} \right)^{n} = \mathrm{e}^{i(a+n\frac{\theta}{2})} 2^{n} \cos^{n} \left(\frac{\theta}{2} \right) \\ &= \left(\cos\left(a + n\frac{\theta}{2} \right) + i \sin\left(a + n\frac{\theta}{2} \right) \right) 2^{n} \cos^{n} \frac{\theta}{2} \end{split}$$

donc $S_n = 2^n \cos^n \frac{\theta}{2} \times \cos(a + n\frac{\theta}{2})$ et $T_n = 2^n \cos^n \frac{\theta}{2} \times \sin(a + n\frac{\theta}{2})$.

Une correction de l'exercice 3

énoncé

ightharpoonup Pour tout $Z \in \mathbb{C}$,

$$Z^4 + Z^3 + Z^2 + Z + 1 = 0 \iff \begin{cases} \frac{1 - Z^5}{1 - Z} = 0 \\ Z \neq 1 \end{cases} \iff Z^5 = 1 \text{ et } Z \neq 1$$

donc comme 1 n'est évidemment pas solution de l'équation, on conclut que

$$Z^4 + Z^3 + Z^2 + Z + 1 = 0 \iff \exists k \in \{1, 2, 3, 4\}, \ Z = e^{i\frac{2\pi}{5}}.$$

On en déduit que pour tout nombre complexe z

$$\left(\frac{z+i}{z-i}\right)^{4} - \left(\frac{z+i}{z-i}\right)^{3} + \left(\frac{z+i}{z-i}\right)^{2} - \left(\frac{z+i}{z-i}\right) + 1 = 0$$

$$\Leftrightarrow \left(-\frac{z+i}{z-i}\right)^{4} + \left(-\frac{z+i}{z-i}\right)^{3} + \left(-\frac{z+i}{z-i}\right)^{2} + \left(-\frac{z+i}{z-i}\right) + 1 = 0$$

$$\Leftrightarrow \exists k \in \{1,2,3,4\}, \quad -\frac{z+i}{z-i} = e^{i\frac{2\pi}{5}} \text{ (ce qui fait 4 équations à résoudre)}$$

$$\Leftrightarrow \exists k \in \{1,2,3,4\}, \quad -\left(1 + e^{ik\frac{2\pi}{5}}\right)z = i\left(1 - e^{ik\frac{2\pi}{5}}\right)$$

$$\Leftrightarrow \exists k \in \{1,2,3,4\}, \quad z = -i\frac{1 - e^{ik\frac{2\pi}{5}}}{1 + e^{ik\frac{2\pi}{5}}} \text{ (car } e^{ik\frac{2\pi}{5}} \neq 1)$$

$$\Leftrightarrow \exists k \in \{1,2,3,4\}, \quad z = -i\frac{e^{ik\frac{\pi}{5}}\left(e^{-ik\frac{\pi}{5}} - e^{ik\frac{\pi}{5}}\right)}{e^{ik\frac{\pi}{5}}\left(e^{-ik\frac{\pi}{5}} + e^{ik\frac{\pi}{5}}\right)} = -i \times \frac{-2i\sin\left(k\frac{\pi}{5}\right)}{2\cos\left(k\frac{\pi}{5}\right)}$$

$$= -2\tan\left(k\frac{\pi}{5}\right).$$

Donc l'ensemble des solutions de l'équation est

$$\left\{-2\tan\left(k\frac{\pi}{5}\right)\mid k\in\{1,2,3,4\}\right\}.$$

Une correction de l'exercice 4

énoncé

1. La première équivalence utilisée ci-après est classique :

$$(z+i)^{n} = (z-i)^{n} \iff \exists p \in [0, n-1] \mid (z+i) = (z-i) \times e^{ip\frac{2\pi}{n}}$$

$$\iff \exists p \in [0, n-1] \mid z \left(1 - e^{ip\frac{2\pi}{n}}\right) = -i\left(1 + e^{ip\frac{2\pi}{n}}\right)$$

Dans l'ensemble $\left\{e^{ip\frac{2\pi}{n}}\mid p\in \llbracket 0,n-1\rrbracket\right\}$ des racines $n^{\text{\`e}me}$ de l'unité, seule la valeur correspondant à p=0 donne 1, ce qui entraı̂ne alors que $\left(1-e^{ip\frac{2\pi}{n}}\right)=0$.

Mais dans ce cas l'équation donne alors 0 = -2i, qui n'a pas de solution.

Il reste donc

$$(z+i)^n = (z-i)^n \iff \exists p \in [1, n-1] \mid z = \frac{-i\left(1 + e^{ip\frac{2\pi}{n}}\right)}{1 - e^{ip\frac{2\pi}{n}}}$$

Or

$$\frac{-i\left(1 + e^{ip\frac{2\pi}{n}}\right)}{1 - e^{ip\frac{2\pi}{n}}} = -i\frac{e^{ip\frac{\pi}{n}}\left(e^{-ip\frac{\pi}{n}} + e^{ip\frac{\pi}{n}}\right)}{e^{ip\frac{\pi}{n}}\left(e^{-ip\frac{\pi}{n}} - e^{ip\frac{\pi}{n}}\right)} = -i\frac{2\cos\left(p\frac{\pi}{n}\right)}{-2i\sin\left(p\frac{\pi}{n}\right)} = \frac{\cos\left(p\frac{\pi}{n}\right)}{\sin\left(p\frac{\pi}{n}\right)} = \cot\left(\frac{e^{ip\frac{\pi}{n}}}{e^{ip\frac{\pi}{n}}}\right) = -i\frac{e^{ip\frac{\pi}{n}}\left(e^{-ip\frac{\pi}{n}} - e^{ip\frac{\pi}{n}}\right)}{-2i\sin\left(p\frac{\pi}{n}\right)} = \cot\left(\frac{e^{ip\frac{\pi}{n}}}{e^{ip\frac{\pi}{n}}}\right) = \cot\left(\frac{e^{ip\frac{\pi}{n}}}{e^{ip\frac{\pi}{n}}}\right) = -i\frac{e^{ip\frac{\pi}{n}}\left(e^{-ip\frac{\pi}{n}} - e^{ip\frac{\pi}{n}}\right)}{-2i\sin\left(p\frac{\pi}{n}\right)} = \cot\left(\frac{e^{ip\frac{\pi}{n}}}{e^{ip\frac{\pi}{n}}}\right) = -i\frac{e^{ip\frac{\pi}{n}}\left(e^{-ip\frac{\pi}{n}} - e^{ip\frac{\pi}{n}}\right)}{-2i\sin\left(p\frac{\pi}{n}\right)} = -i\frac{e^{ip\frac{\pi}{n}}\left(e^{-ip\frac{\pi}{n}} - e^{ip\frac{\pi}{n}}\right)}{-2i\sin\left(p\frac{\pi}n}\right)} = -i\frac{e^{ip\frac{\pi}{n}}\left(e^{-ip\frac{\pi}{n}} - e^{ip\frac{\pi}{n}}\right)}{-2$$

donc

$$(z+i)^n = (z-i)^n \Leftrightarrow \exists p \in [1, n-1] \mid z = \cot \left(p\frac{\pi}{n}\right)$$

L'ensemble des solutions de l'équation est donc

$$\left\{ \operatorname{cotan}\left(p\frac{\pi}{n}\right) \mid p \in [\![1,n-1]\!] \right\}$$

2. 1. Grâce à la formule du binôme, on a

$$(z+i)^5 = (z-i)^5$$

$$\Leftrightarrow z^5 + 5iz^4 - 10z^3 - 10iz^2 + 5z + i = z^5 - 5iz^4 - 10z^3 + 10iz^2 + 5z - i$$

$$\Leftrightarrow 10iz^4 - 20iz^2 + 2i = 0$$

$$\Leftrightarrow 5z^4 - 10z^2 + 1 = 0 \text{ (en divisant les 2 membres par 2i)}$$

Posons $y=z^2$, on résout alors $5y^2-10y+1=0$, cette équation a pour discriminant $\Delta=80=5\times16=\left(4\sqrt{5}\right)^2$, et pour solutions $\frac{+10-4\sqrt{5}}{20\sqrt{5}}=1-\frac{2\sqrt{5}}{5}$ et $1+\frac{2\sqrt{5}}{5}$. Ainsi

$$(z+i)^5 = (z-i)^5 \Leftrightarrow z^2 = 1 - \frac{2\sqrt{5}}{5}$$
 ou $z^2 = 1 + \frac{2\sqrt{5}}{5}$ (ce sont deux réels positifs)
 $\Leftrightarrow z = \pm \sqrt{1 - \frac{2\sqrt{5}}{5}}$ ou $z = \pm \sqrt{1 + \frac{2\sqrt{5}}{5}}$

D'où l'ensemble des solutions, dans l'ordre croissant

$$\left\{-\sqrt{1+\frac{2\sqrt{5}}{5}}, -\sqrt{1-\frac{2\sqrt{5}}{5}}, \sqrt{1-\frac{2\sqrt{5}}{5}}, \sqrt{1+\frac{2\sqrt{5}}{5}}\right\}$$

2. Si on applique le résultat obtenu dans la première question avec n = 5, on obtient aussi pour la même équation l'ensemble des solutions

$$\left\{ \operatorname{cotan}\left(p\frac{\pi}{5}\right) \mid p \in [\![1,\!4]\!] \right\} = \left\{ \operatorname{cotan}\left(\frac{\pi}{5}\right), \operatorname{cotan}\left(\frac{2\pi}{5}\right), \operatorname{cotan}\left(\frac{3\pi}{5}\right), \operatorname{cotan}\left(\frac{3\pi}{$$

La valeur de cotan $\frac{\pi}{5}$ est la plus grande des 4.

Pour justifier cela, on peut invoquer la décroissance de la fonction cotan sur l'intervalle $]0,\pi[$ (car $\cot a'=-1-\cot a'=-\frac{1}{\sin^2}).$

Par conséquent, on peut identifier les plus grandes valeurs des deux

ensembles, et affirmer que
$$\left| \cot \frac{\pi}{5} = \sqrt{1 + \frac{2\sqrt{5}}{5}} \right|$$

On en déduit que

$$\tan\frac{\pi}{5} = \frac{1}{\cot \frac{\pi}{5}} = \frac{1}{\sqrt{1 + \frac{2\sqrt{5}}{5}}}$$

De plus

$$\cot^2 = \left(\frac{\cos}{\sin}\right)^2 = \frac{\cos^2}{\sin^2} = \frac{1 - \sin^2}{\sin^2} = \frac{1}{\sin^2} - 1$$

donc

$$\sin^2 = \frac{1}{\cot^2 n^2 + 1}$$

et en particulier

$$\sin^2\left(\frac{\pi}{5}\right) = \frac{1}{\cot^2\left(\frac{\pi}{5}\right) + 1} = \frac{1}{\left(1 + \frac{2\sqrt{5}}{5}\right) + 1} = \frac{5}{10 + 2\sqrt{5}}$$

Comme $\frac{\pi}{5}$ est entre 0 et π , on sait que $\sin\frac{\pi}{5}$ est positif, donc $\sin^2\left(\frac{\pi}{5}\right)=\frac{5}{10+2\sqrt{5}}$ donne

$$\sin\left(\frac{\pi}{5}\right) = \sqrt{\frac{5}{10 + 2\sqrt{5}}}$$

Maths - PCSI - Lycée René Cassin - Bayonne - 2024-2025

Enfin, de $\cos^2=1-\sin^2$, et sachant que $\cos\frac{\pi}{5}$ est positif, on déduit

de façon similaire que
$$\left[\cos\left(\frac{\pi}{5}\right) = \sqrt{\frac{5+2\sqrt{5}}{10+2\sqrt{5}}}\right]$$
.