Colles des semaines 9 & 10. Réduction des endomorphismes et matrices

carrées

Le rapport du Jaury

(i). = Diagonaliser une matrice A, c’est trouver une matrice diagonale D

(avec les valeurs propres sur la diagonale) et une matrice inver-
sible P (avec en colonnes les vecteurs propres respectifs aux va-

leurs propres) tellesque| A=P x D x P! ]; comme dans la remarque
12.12.

Pour trouver les vecteurs propres de la matrice A associés a la valeur
propre A, on doit résoudre AX = AX, mais il est hautement conseillé de
résoudre le systéme homogéne équivalent [ (A—=AL)X=0 ], et ceen

appliquant la technique du pivot de Gauss avec des opérations
sur les lignes de la matrice (A —AI,)!

?’ Le mieux étant d’obtenir cette forme de résolution :

(A—AL)X=0<=--- (pivot de Gauss) ---
=S X=---
— XeVect(,...),

pour conclure que E,; (A) = Vect (O, ...).

(ii). Méme si le premier réflexe pour trouver les valeurs propres d'une ma-
trice M est de chercher le polynéme caractéristique, il est parfois plus
facile de trouver les valeurs propres et leurs ordres de multiplicité par des
considérations comme

= Peu d’éleves pensent a utiliser le fait que la trace de M est la

somme des valeurs propres (chaque valeur propre A étant comp-
tée m, fois)!

C’est pourtant un outil trés utile, ne serait-ce que pour vérifier les
valeurs propres qu’on a trouvées, mais aussi pour trouver celles qui
restent quand on en a déja d’autres (voir les exercices 5, 6, 8, 9).

la somme des termes de chaque ligne de M vaut O (le méme résultat
1 1
pour toutes les lignes), donc M x () =0Ox (:), ainsi O est une

i i
valeur propre de M ;

= la somme des termes de chaque colonne de M vaut [, donc la somme

des termes de chaque ligne de M' vaut O, ainsi d’aprés la remarque
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ci-dessus O est une valeur propre de M', donc O est aussi une valeur
propre de M (mais on ne connait pas a priori de vecteur propre associé) ;

= on remarque une colonne ot seul le terme de la diagonale est non
nul, etc, et d’en déduire le polyndme caractéristique.

(iii). Rappelons que la phrase « le polynéme caractéristique de O est scindé dans
K[X] » sert a dire que [ a toutes ses valeurs propres dans K.
En particulier, si M € #3(R) a un polyndme caractéristique qui n’est
pas scindé dans R, par exemple y, = X(X? + 4), alors M a des valeurs
propres hors de R, c’est pour ¢ca que M n’est pas diagonalisable dans
Ms(R) (mais dans ce cas elle est quand méme diagonalisable dans #5(C)
car yy = X(X — 2i)(X + 2i) est scindé a racines simples dans C).

(iv). Bien comprendre que la proposition 12.16 est en deux parties :
= la premiére partie affirme que si jamais on trouve un polynéme an-
nulateur de O scindé a racines simples, alors O est diagonalisable ;

= la deuxiéme partie affirme qu’en particulier, O est diagonalisable si,

et seulement si, le polynéme || (X—2) annule O0.
A€Sp(0)

(v). Attention! | Les notations m;, et d; ne sont pas standard.

Un jour sans doute, elles seront connues sous le nom de notations de
Jaury, mais pour le moment ’humanité n’est pas préte.
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Questions de cours 1

1. Donner la définition d’une valeur propre d’'un endomorphisme et d’une
matrice, ainsi que des ordres de multiplicité algébrique et géométrique.

Définitions 12.4 et 12.7.
Quelles inégalités y a-t-il entre ces deux ordres ?
Proposition 12.12.
2. Donner la relation entre les valeurs propres et la trace.
Voir le dernier résultat de la proposition 12.11.
3. Définir un endomorphisme diagonalisable, et une matrice diagonalisable.
Définitions 12.5 et proposition 12.14.
4. Dans un espace vectoriel de dimension finie, donner trois caractérisations
de la diagonalisabilité (dont une avec un polynéme annulateur).
Les propositions 12.15 et 12.16.
5. Donner une condition suffisante de diagonalisabilité.
Proposition 12.17

Exercice 1

Déterminer les valeurs propres et sous-espaces 0O O 1
propres de la matrice A. Est-elle diagonalisable ? A=]|0 0 -1
Déterminer les puissances de A. 1 -1 -1
Exercice 2

7 2
1. Diagonaliser A = (_ 4 1) , et en déduire I'expression de A™.

2. On note (u,),ey et (Vy),en les suites définies par ug = vy =1 et

Uy = 7Uy + 2V,

Vne
BEN {vn+1=—4un+vn

Pour tout n € N, déduire de la premiére question I'expression de u,, et v,
en fonction de n.
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Exercice 3

2 1
1. Diagonaliser la matrice A = ( 4 _1) :

2. En déduire que son commutant (c’est-a-dire I’ensemble des matrices qui
commutent avec A) est Vect (I, A).

Exercice 4
1. Déterminer les valeurs propres et sous- 1 —-12 2
espaces propres de la matrice A ci-contre. A=]1 1 1
Est-elle diagonalisable ? 4 8 3
-1 0 O
2. Montrer que la matrice B=| 0 3 1 | est semblable a A.
0O 0 3

3. Déterminer B" pour tout entier naturel n, et en déduire A".

Exercice 5

a+b a a-b a

a a+b a a—>b
a—-b a a+bd a

a a—b a a+b
Montrer que M est diagonalisable ; déterminer son spectre.

Soient (a,b) €R? et M =

Exercice 6

On note J,, la matrice de .#,(R) dont tous les coefficients valent 1, et pour
tout (a, b) € R?, on note M(a, b) la matrice dont les termes diagonaux valent
a, et dont les autres coefficients valent b.

1. Donner le rang et le polynéme caractéristique de J,,. Montrer que J,, est
diagonalisable et déterminer ses éléments propres.

2. En déduire que M(aq, b) est diagonalisable, donner ses valeurs propres et
sous-espaces propres.
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Exercice 7

Soit A une matrice de .#,(C), avec n = 3, de rang 2, de trace nulle et telle
que A" #0,,.
Montrer que A est diagonalisable et donner son spectre.

Exercice 8

Soient n > 2 un entier pair et A =

Déterminer le rang de A.
Montrer que A est diagonalisable et préciser ses éléments propres.

Exercice 9

Soient "™ neNtelquen>2,

= A e #,(R) dont tous les termes valent 1 sauf ceux de la dia-
gonale qui sont nuls,

= et I'application u : M € .#,, — M + tr(M)A.
1. Prouver que le polyndme X2 — 2X + 1 est annulateur de u.

2. L’endomorphisme u est-il diagonalisable ? Justifier votre réponse en utili-
sant deux méthodes (I'une avec, I'autre sans I'aide de la question 1.).

Exercice10 — @

Soit A € #,(R) telle que A% +1,, ne soit pas inversible.
1. Montrer qu'il existe X € .#,, ;(C) tel que AX =iX et X # 0.
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2. Montrer que A est semblable sur R a une matrice de la forme

0 1

-1 0 B

, avec Be ., »(R),
On—2,2 C etCe My 5, (R).

Exercice 11 — @ - Mines-Ponts 2019

On considére une suite complexe (a,),>; telle i Giocaaas a,
que a, # 0. ag 0. oooes 0
Pour tout n € N*, on introduit la matrice A, ci- A =] @ : " :
contre dont on note y,, le polyndme caractéris- Do o
tique : @, ([@oacans 0

1. Déterminer g, et y5.

2. Montrer que y,, est divisible par X"~2.
n
3. On pose b, = Zai. Montrer alors que y,, = X" 2(X? — a;X — b,,).
k=2
4. Selon que b,, est nul ou non, étudier la diagonalisabilité de A,,.

. )

Exercice 12 - &®

0 A
Soit A € #,(C) une matrice diagonalisable et B = (I 0) € M5, (C).
n

Donner les valeurs propres de B et la dimension des sous-espaces propres
correspondants.
A quelle condition B est-elle diagonalisable ?

Exercice 13 — @@ - Mines-Ponts 2019

Soient E un C-espace vectoriel de dimension finie et u € Z(E).
Montrer que u est diagonalisable si et seulement si tout sous-espace vectoriel
de E admet un supplémentaire stable par u.
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Solutions

Une correction de l’exercice 1 énoncé

On voit que cette matrice est symétrique réelle, donc le théoréme
@ spectral nous permet d’affirmer que cette matrice est diagonalisable.

Le polyndme caractéristique de la matrice A est :

X 0 —1|Lj«<L+Xl3—L,
X)) =det(Xl; —A)=|0 X 1

-1 1 X+1

0 0 —2+X(X+1)
=0 X 1

-1 1 X+1

0 —2+X(X+1

= vy )‘

=X(—2+XX+1)=X(X*+X-2)
=X(X-1)(X+2)),

donc A admet trois valeurs propres deux & deux distinctes qui sont 0, 1 et —2.
On peut en déduire que A est diagonalisable et que les trois sous-espaces
propres sont des droites vectorielles.

Les résolutions successives des systemes AX = 0, (A—I3)X =0 et (A+2I3)X =0
donnent

1 1 1
E;(A) = Vect -1 , Eo(A) = Vect 1 , E_5(A) = Vect 1
1 0 -2
1 1 1 1 0 O
AinsiA=PDP™! avecP=|-1 1 —-1|etD=|0 0 O
1 0 -2 0O 0 -2

Puis par la méthode du pivot, ou méthode de Gauss-Jordan (on transforme
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avec des opérations sur les lignes (A|l3) en (I3|P~1)) on obtient

1/3 -1/3 1/3
pl=|1/2 1/2 0
1/6 —1/6 —1/3

Par récurrence, on montre que pour tout n € N, A" = PD"P7!, ce qui donne :
1/3+1/6 (-2)" -1/3—-1/6(-2)" 1/3—-1/3(=2)"

A"=|-1/3-1/6(-2)" 1/3+1/6(-2)" -1/3+1/3(=2)"
1/3-1/3(=2)" —1/3+1/3(=2)" 1/3+2/3(-2)"

Une correction de I'exercice 2 enoncé
1. Le polyndéme caractéristique de A est

X-7N)X-1)—-(—2)x4=X2-8X+15=(X—-5)-(X—3),
donc les valeurs propres de A sont 3 et 5.

La résolution de (A — 31,)X = 0 donne E5(A) = Vect ((_12) ) , et celle de

(A — 5I,)X = 0 donne Es(A) = Vect ((_11) )

2. La matrice A est dans .#,(R) et posséde 2 valeurs propres distinctes, donc
elle est diagonalisable.

1 1
De plus, d’aprés les calculs précédents, en notant P = (_1 _ 2) etD=

30 . . .
0 5| ona la diagonalisation suivante de A :

A=PxDxP}
dont on tire par récurrence que pour tout n € N,

A" =pD"p~!

=[5 %) #)(5 )
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3. (a) De maniere évidente, pour tout n € N, X, ; = AX,,.
(b) On en déduit par récurrence que pour tout n € N,

(ﬁ:):xnzAnxO
=(5 )00 #)(5 2)x0)

B 3H+1_2X5n
-3 4 x5n

Une correction de 'exercice 3 enoncé
1. On obtient le polyndme caractéristique g, = (X —3)(X+2) et donc SpA =
{—2,3}.
Aprés résolution des équations AX = 3X et AX = —2X, on obtient :

()}

On peut donc conclure que
Ao (11 3.0) o
“l1 —4)%\lo —2)% >
sachant que la méthode de Gauss-Jordan nous donne

~ 5\l -1/

2. Notons 6(A) le commutant de A.

= ]I est évident que I, et A sont dans ¥ (A), et je vous laisse prouver
que 6(A) est stable par combinaison linéaire, donc on a I'inclusion
Vect(I,,A) C €(A).
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= Réciproquement, soit M € .#,(R),

M € 6(A) & AM = MA < (PDP~')M = M(PDP})

1 P (en multipliant a gauche
D x (P7"MP) = (P""MP) x D par P! et a droite par P).

a b a b (en posant
{ —2b=3b

< b=c=
3c=—-2c b=c=0

<:>P_1MP—(G O)@M—P(a O)P_l
—\o d —\lo d

M= 174 1 dl 1 -1
SN—— S——

=U =V
< M e Vect (U, V).

Ainsi €(A) = Vect(U,V), et les matrices U et V n’étant pas coli-
néaires, on peut conclure que (U,V) est une base de € (A), et donc
que dim (€6 (A)) = 2.

= Comme Vect(I,,A) et ¢(A) sont de méme dimension, et que 'un est
inclus dans l'autre, on peut conclure qu’ils sont égaux.




Colles des semaines 9 & 10. Réduction des endomorphismes et matrices
carrées

Une correction de l'exercice 4 énoncé
1. Le polyndme caractéristique de A est

yal(x) = det(xI; — A)

—4 1

x—1 12 —2 | Ly « Ly +(x — 1)L,
— —1 X—]. —1
_4 _8 x_3 L3<—L3—4L2
0 124(x—12 —x-1
=|-1 x—1 -1
0 —4(x+1) x+1
124+ (x—-1)?% —x-1
=—(-1)| _
4(x+1) x+1
124+ (x—-1)?% —x-1
e +1)‘ (= 1) ‘

=(x+1)[12+(x—1)2—(—4)(—x—1)]
= (e +1)[12+ (< 2+ 1) — 4x — 4]

:(x+1)[x2—6x+9] = (x+1)(x — 3)2.

Donc A admet deux valeurs propres : 3 est valeur propre d’ordre 2, et 1
est valeur propre d’ordre 1.

En résolvant (A — 3I3)X = 0 et (A + I3)X = 0, on obtient E5(f) =
Vect(—2,1,4) et E_;(f) = Vect(—1,0,1).

La somme des dimensions des sous-espaces propres ne donne pas 3 qui
est la dimension de R, donc A n’est pas diagonalisable.

2. On doit montrer qu'il existe une base (ey, e,, e5) de R® dans laquelle A (ou
plutdt I'endomorphisme u, canoniquement associé a A) a pour matrice B,
autrement dit

Ael A62 A63
~1 0 0)\e
Mat (UA) = 0 3 1 ()
(e1,e2,e3) 0 0 3 es
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ce pourquoi il faut que

Ael = —€ (A + 13)61 =0
{ Aez = 362 — { (A - 313)62 =0
A63 =€y + 363 (A — 313)63 =€y

On prend pour les deux premiers vecteurs les deux vecteurs propres e; =
(—=1,0,1) et ey = (—2,1,4) respectivement associés a —1 et 3 que l'on a
trouvé dans la premiére question.

Enfin, en résolvant le systtme de matrice augmentée (A — 3Isle;), on
constate que le vecteur e5 = (1,0,0) convient.

On vérifie de nouveau que (eq,e,,e3) est une base de R® de la facon de
notre choix, par exemple en calculant le déterminant dans la base cano-
nique de la famille :

-1 -2
0

1
1 0
1 4 0

qui vaut —1 en développant par la derniére colonne.
D’oli c.Q.F.D.
3. = Par récurrence, on montre que pour tout n € N, B" est de la forme

-1 0 0
B" = 0 3" U,
0 0o 3"

avec uy =0, uy =1, et pour tout n € N, u,,,; = 3u,, +3, donc on déduit
(suite arithmético-géométrique) que pour tout n € N, u,, = % x(3"—1).

= Par la formule de changement de base, on pose P = Mat/(e;, e,,€3),
et alors

Azlvggt(f):PxBxP_l

= Puis par récurrence (ou par changement de base pour f™ remar-
quons!), pour tout n € N,

A"=PxB"x P!
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et je vous laisse faire le calcul qui donne

0 4 1
pl=[0 1 0
1 -2 1

et

4x3"—3 —10x3"+4(-1)"+6 4x3"—(-1)"-3
At=| —2x3742 4x3"-3 —3x3n43
—-6x3"+6 16x3"—4(-1)"-12 —-6x3"+(-1)"+6

ce qui est vraiment super chouette.

Une correction de I’exercice 5 enoncé
La matrice M est diagonalisable car elle est symétrique réelle.

Méthode empirique

L’observation de la somme des termes de chaque ligne de M nous permet
d’avancer que

1 1
M x =4a| - |,
1 1
1
donc 4a est une valeur propre de M et | : | est un vecteur propre associé.
1

Puis avec encore plus d’astuce en additionnant la premiére et la troisieme
colonne, ainsi que la deuxiéme et la quatrieme :
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donc 0 est valeur propre, puis

1 1 1 1
-1 -1 1 1
Mx| | =2b| _q |, et Mx| _;|=2b] ;|

1 1 -1 -1

donc 2b est valeur propre, d’ordre de multiplicité géométrique au moins 2.
On en déduit que le spectre de M est {0,4a,2b }, avec les ordres de multiplicité
géométriques et algébrique respectivement égaux a 1,1,2.

Autre méthode

Calculons le polynéme caractéristique de M : I'opération élémentaire L; «
L; +L,+ L3+ L, donne :

a+b—A a a—b>b a
a a+b—2A a a—>b
ta(r) = a—>b a a+b—2A a
a a—>b a at+b—A
1 1 1 1
a—>b a+b—A a a—>b
=@Ml poa 4
a a—b>b a a+b—A

Ensuite les opérations L; < L; — al.; pour i = 2,3,4 donnent :

1 1 1 1

0 b—A 0 —b
) =@a-n| ., o T

0 -b 0 b-—A
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Enfin avec les opérations C3 < C5 — C; et C4 «— C4 — C, il vient :

1 1 0 0

0 b—XA 0 —2b+2:
M) =(da=2) g 5y 0

1 1 0 0
o 2| 0 b= 0 -1
=(a-M2b-2| "7 ]

0 -b 0 1

1 1 0
=(4a—-N)2b—-2)?*| 0 b—=A -1 |[=A(\—4a)(L—2Db)%.

0 -b 1

Les valeurs propres de M sont donc dans le cas général ot 0,2b et 4a sont
distincts (c’est-a-dire a # 0,b # 0 et b # 2a) : 0 et 4a valeurs propres simples
et 2b valeur propre double.

\ J

Une correction de l'exercice 6 enoncé

1. ~ Premiére méthode: Le rang de cette matrice est 1, donc son noyau
(en vérité c’est le noyau de son endomorphisme canoniquement associé)
est de dimension n — 1, ce qui revient a dire que 0 est une valeur
propre de J,, d’ordre de multiplicité géométrique n— 1, et d’ordre de
multiplicité algébrique supérieur ou égal a n — 1.
Par conséquent, X"~ ! divise le polyndme caractéristique ¥ 5, qQui est
unitaire de degré n, donc se factorise donc sous la forme

15, (X)=X""1(X—1), ot A €C.

Autre méthode: y; (X)=X""'(X-2), ou L €C.

= Ce polyndme caractéristique est scindé dans C[X], donc on sait que la
trace de J,,, c’est-a-dire n, est égale a la somme des valeurs propres, qui
vaut ici A. On en déduit donc que A = n, puis que y; (X) = X" 1(X—n),
et enfin que 0 est valeur propre d’ordre de multiplicité algébrique n—1,
et n valeur propre d’ordre 1.
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o La somme des termes de chaque ligne donne n, d’ol
? 1 1
1 1
Jn X : =nx :
1 1
ce qui donne une autre maniére de prouver que n est valeur
1

propre de J,,, et que (
1
= On sait déja que dim(Ey(J,))=n—1.
D’autre part, n est valeur propre de J,, d’ordre de multiplicité algébrique
1, donc dim(E,(J,,))) =1,

Rappelons que I’égalité entre 'ordre de multiplicité géome-
f trique, c’est-a-dire la dimension du sous-espace propre, et

) est un vecteur propre associé.

I’ordre de multiplicité algébrique est toujours vraie pour les va-
leurs propres simples, c’est-a-dire les valeurs propres d’ordre
de multiplicité algébrique 1.
et par conséquent J, est diagonalisable.
= On remarque que les n — 1 vecteurs E; — E;, ol les E; forment la base
canonique de .#, 1(R), pour i € [2,n] sont dans Ey(J,,) et forment une
famille libre, donc une base de Ey(J,,).

D’autre part, on a vu que la colonne C remplie de 1 est dans E,(J,,) qui
est de dimension 1, donc E,(J,,) = Vect(C).

= En conclusion, J,, est diagonalisable de la facon suivante :

1 1...... 1 1 0 0....... 0
-1 0...... 0 1 0
J,=|0 R . xP~1
0 .00
0...... 0 -1 1 0....... 0 n
5 D

Ou, ce qui revient au méme, P! x J, xP=D.

o
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2. On remarque que M(a, b) = bJ,, + (a — b)I,,, donc

P! x M(a,b) x P=P 1 (bJ, + (a — b)I,)P
=bP1J,P+(a—b)P ,P=bD+(a— b,
=Diag(a —b,...,a—b, a+(n— 1)nb).
N~ —
n—1 fois
On en déduit que M(a, b) est diagonalisable, que ses valeurs propres sont
a—b dordren—1, et a+(n—1)b dordre 1, avec la méme matrice de

passage P, donc les méme sous-espaces propres que J,, : E,_;,(M(a, b)) =
Eo(Jp), et Eq(n_1)p(M(a, b)) = E, (J,).

Une correction de 'exercice 7 enoncé

=~ Par le théoréme du rang, E,;(A) = Ker(A) est de dimension n — 2, donc
1a(X) = X" 2Q, avec deg(Q) = 2 (mais rien n’empéche a priori Q de s’annu-
ler en 0).

= Soient a et b les autres racines, éventuellement complexes, de Q, alors
ta=X"2(X~a)(X - b),
et
Tr(A)=(n—2)x0+a+ b,

d’olt a = —b car Tr(A) = 0.

= Sia = b = 0, alors le polynébme caractéristique de A est X", mais alors
le théoréme de Cayley-Hamilton nous dit que A™ = 0,,, ce qui contredit
I'énoncé.
Ainsi a est non nul.

= On en déduit que a et —a sont deux valeurs propres distinctes, non nulles
et comme 0 est déja d’ordre de multiplicité algébrique au moins n — 2, a
et —a sont des valeurs propres simples, c’est-a-dire d’ordre de multiplicité
algébrique 1.
Ainsi y, est scindé, et les 3 sous-espaces propres ont une dimension égale
a lordre de multiplicité de la valeur propre correspondante, donc A est
diagonalisable.
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Une correction de l'exercice 8 enoncé
On commence par remarquer que la définition de la matrice

g . . . .
? impose que n soit un entier pair.

= Il est clair que rg(A) = 2 donc par le théoréme du rang 0 est valeur propre
d’ordre de multiplicité géométrique n — 2, et par un coup d’ceil affuté :

(((1)\(?\ (?\\

-1 0 :
Ker (A) = Vect o 1,[-11],....] ©
: 0 1

| 0
o) \o) (-1))

. 1
= On remarque que la somme des lignes est constante et vaut @ donc
1
est valeur propre et | : | est un vecteur propre associé.
1

n(n+1)
2

= Comme Tr(A) = ”;, la derniére valeur propre A (fut-elle en théorie com-
plexe, ou égale a une des deux précédentes) vérifie
n(n+1) n?
n—2)x0+——"+A=—,
( ) 2 7
dour=-7.
= Ainsi A admet pour valeurs propres 0 a 'ordre de multiplicité géométrique
n— 2, et deux autres valeurs propres % et —%, non nulles et distinctes
entre elles.
Ainsi, comme les sous-espaces propres sont en somme directe dans R”, les
sous-espaces propres associés a @ et —% sont des droites vectorielles.
En particulier, on sait déja que

En(n+1) (A) = Vect
2
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Donc il nous suffit donc de trouver un vecteur propre particulier de S as-
socié a la valeur propre —%.

X
- Si X = 1 est un tel vecteur propre, alors SX = —gx, ce qui équivaut a
Xn
Vke[l;n], kxx;+Mn—k+1)xxy+kXx3+...
oo+ (n—k+1) xxnz—gxk
Notons A, resp. B, la somme des coefficients Tcl:l’indices impairs, resp. pairs,

de X. Remarquons en passant que A+ B = Z X
k=1
Alors SX = —EX équivaut a

Vke[1; n], kxA—I—(n—k+1)><B=—§xk.

En additionnant ces égalités pour k de 1 a n, on obtient

n n n n n
k A+ n—k+1)B=—— x.=——(A+B
; ;( ) 2; k=—5(A+B)

n(n+1 n(n+1

( )A+ ( )B
2

doi A+B=0, donc B=—A.

n
c’est-a-dire = — E(A +B)

Ainsi

SX=—§X(=)Vk€[[1;n]], kxA—(n—k+1)xA=—§xk

2A
& Vke[l;n], x), =—(2k—n-1))
n

(~(n—1))

—(n—3)
2A :
—X=— -1
n +.1
\+(n-— 1))
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Ainsi ce dernier vecteur colonne ci-dessus est un vecteur propre de A as-
socié a la valeur propre —%, et il forme a lui tout seul une base de E_x (A).

J

Une correction de 'exercice 9 enoncé
Soit n €N tel que n > 2.
0, sii=j,
1, sii#j.
1. Prouvons que P = X2 — 2X + 1 est annulateur de u c’est-a-dire que P(u) =
0_4 (), @utrement dit que pour tout M € .#,(R), P(u)(M) = 0,,.
On remarque que

La matrice A a pour terme général a;; = {

u*(M) = uou(M) = (M + tr(M)A) + tr (M + tr(M)A) A
=M+ tr(M)A + tr(M)A + tr(M)tr(A)A (par linéarité de la trace)
=M+ 2tr(M)A (car Tr(A) = 0).

Ainsi

(M) — 2u(M) + Id(M) = M + 2tr(M)A — 2M — 2tr(M)A + M

=0, C.Q.F.D.

2. Le polyndme P = (X — 1)? est annulateur de u, donc Spg(u) € {1}.
Or u(A) =A et A# 0, donc 1 est bien valeur propre, et Spg(u) = {1}.
Si u est diagonalisable alors d’aprés le cours, (X — 1) est un polyndme
annulateur de u, autrement dit u —id_4 () est 'endomorphisme nul, donc
u=1id 4 (r), ce qui n’est pas.
Donc u n’est pas diagonalisable.

3. Soit A une valeur propre de u, alors il existe une matrice non nulle M
telle que u(M) = AM, c’est-a-dire M + Tr (M)A = AM, ce qui entraine que
(A—=1M=Tr(M)A.

= Si A =1, alors u(M) = M si, et seulement si, Tr(M) = 0, et comme
la trace est une forme linéaire non nulle sur ., (R), on en déduit que
son rang vaut 1, donc gréce au théoréme du rang que son noyau est
de dimension n? — 1.
Donc 1 est valeur propre de u d’ordre de multiplicité géométrique n? —
1.
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= SiA#1, alorsuM) =AM <=M = %A = M € Vect (A).
On va donc chercher des solutions sous la forme M = cA, ot ¢ € R.
On remarque en particulier que comme Tr(A) = 0, par linéarité de la
trace, Tr(M) = ¢ X Tr(A) = 0, et donc que u(M) = M.

On a donc

H(M)=?»M<=>{ M=2M <=>{ (1-AM=0,

JueR, M=pA JueR, M=pA
< M=0, (car A #1)

donc A n’est pas valeur propre de u.

On a donc prouvé que 0 est la seule valeur propre de u et que son ordre de
multiplicité géométrique est n? — 1, et celle-ci étant strictement inférieure
a dim (#,(R)) = n?, on peut conclure que u n’est pas diagonalisable.

Une correction de l’exercice 10 énoncé
= La matrice A? +1, elle n’est pas inversible, donc

det (A*+1,) =0,
or A2+1,=(A—il,)(A+il,), d ot par propriété du déterminant
det(A —il,))det(A+il,)=0.
Ainsi I'un des deux facteurs de ce produit est nul, ce qui prouve que i, ou

—i est valeur propre de A.
J’espeére qu’il est clair qu’un scalaire A est valeur propre de O si, et
seulement si, 0 — Aidg n’est pas inversible (ou bijectif).
Mais comme A est une matrice a coefficients réels, on en déduit que i ET
—1i sont valeurs propres de A, donc en particulier qu’il existe X non nul
dans ., ;(C) tel que
= On écrit le vecteur X de la question (a) sous la forme U+iV avec U et V dans
M ,(R). La relation AX = iX se traduit alors par A(U + iV) = i(U +iV),
c’est-a-dire par
AU = -V
AV =T.
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Il est impossible que U ou V soit nul, sinon U et V le seraient, donc X serait
nul, ce qui n’est pas le cas. Par suite, si (U, V) est une famille liée, on peut
supposer sans perte de généralité que U = kV avec k € R. De la premiére
équation ci-dessus, on tire AV = —V/k, et de la seconde, AV = kV, d’ol
I'on déduit (1+k?)V =0, donc V = 0 (puisque k est réel), mais on vient
de voir que cela est impossible. La famille (U, V) est donc libre, et on peut
compléter cette famille pour former une base de R", identifié ici a ./, ;(R).
Les deux relations AU = —V et AV = U montrent que A est semblable a
une matrice de la forme décrite dans I'énoncé.

Une correction de 'exercice 11 enoncé

1. %) =XX—a,) —a, 130) =X* —a;X* + (—aj —a2) X.

2. Comme a, # 0, rg(A,,) = 2, donc par le théoréme du rang dim(Ker(A,)) =
n — 2, donc 0 est valeur propre de A, pour n = 3 avec pour ordre de
multiplicité mg > n — 2. Ainsi (X — 0)"2 = X"2 divise x,,.

3. Récurrence en développant selon la derniére colonne.

4. = Si b, = 0, alors 3, = X" (X — a;), donc 0 est valeur propre de A,
d’ordre n — 1 strictement supérieur a la dimension du sous-espace
propre associé, donc A, n’est diagonalisable.

= Si b, # 0, alors X?> — a;X — b, est un polyndme du second degré de
discriminant A = a% + 4b121 > 0 (car ay # 0), donc il admet deux racines
a et B réelles distinctes, et non nulles.
Ainsi y,, est scindé dans R[X], et les ordres de multiplicité de ses valeurs
propres 0, a et f sont n —2, 1 et 1, donc sont égales aux dimensions
de sous-espaces propres, donc A, est diagonalisable.

- J

Une correction de I’exercice 12 énonce
Soit X = (;), etsoit A €C. Alorson a :

_ 2
Bx:xX@{Ay_M <:>{Ay Ay
x = x = Ay

Ainsi, A est valeur propre de B si et seulement si A2 est valeur propre de A.
On a aussi prouvé ci-dessus que l'application E;2(A) — E,;(B) définie par
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A
y— ( yy) est une bijection, et donc dim(E, (B)) = dim(E,2(A)).

Puisque A est diagonalisable, on sait que
p
D dim(Ez(p)) =n,
i=1

ol fy,..., W, sont les valeurs propres de A. Si p; # 0 pour tout i, chaque ;
admet deux racines carrés complexes distinctes £;, et on a

p P p
D dim(Eg(2)) + Y | dim(Eg(—2;)) =2 dim(Ex(A2)) = 2n,
i=1 i=1 i=1

et donc B est diagonalisable.
Au contraire, si u; = 0, alors on obtient une seule carrée, qui vaut O, et la
somme des dimensions des sous-espaces propres de B vaut

P
dim(E;) +2 )  dim(E,, ) = 2n — dim(E;) < 2n.
i=2

On en conclut que B est diagonalisable si et seulement si 0 n’est pas valeur
propre de A.

Une correction de 'exercice 13 énonce
= Supposons que u est diagonalisable, alors il existe une base (e,...,e,) de
E formée de vecteurs propres de u.
Soit F un sous-espace vectoriel de E, de base (x,...,x,), grace au théo-
réme de la base incompléte, on compléte cette famille libre (x;,...,x,)
avec n — p vecteurs pris dans la base (e, ..., e,) pour obtenir une nouvelle
base de E.

On peut noter cette base (X1, ..., Xp, Y1, -+ Yn—p)-

Ainsi G = Vect(yy, ..., ¥n—p) est un sous-espace vectoriel supplémentaire de
F stable par u.

= Pour la réciproque
Premiére méthode : par 'absurde. Supposons que u n’est pas diagona-
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lisable, et trouvons un sous-espace vectoriel qui n’a pas de supplémen-
taire stable par u.

L’endomorphisme u n’est pas diagonalisable, donc

F= D EW@

AeSp(u)
est un sous-espace vectoriel de E différent de E.

Prenons alors un supplémentaire G de F dans E, et montrons que G
n’est pas stable par u.

De nouveau par I'aburde, supposons que G est stable par u, alors u induit
un endomorphisme de G que I'on note ug. Comme G est de dimension
au moins 1, le polyndme caractéristique de ug est de degré au moins
1, donc il admet au moins une racine dans C (c’est le théoréme de
d’Alembert-Gauss ), et cette racine est alors une valeur propre de ug.
Il existe alors un vecteur non nul x dans G tel que ug(x) = Ax, mais
par définition de ug, ug(x) = u(x), donc u(x) = Ax, donc A est valeur
propre de u, et x € E, (u), donc par définition de F, x €F.

Avoir supposé que G est stable par u nous a donc permis de construire
un vecteur non nul qui est dans FNG, ce qui contredit le fait que G est un
supplémentaire de F dans E. Donc G n’est pas stable par u, et I'exercice
est bouclé.

Deuxiéme méthode : par récurrence sur la dimensionde E. @ Si
dim (E) = 1, quel que soit 'endomorphisme u de E, quoi que I'on
suppose sur les sous-espaces vectoriels de E stables ou non, u est
diagonalisable, je vous laisse vous en convaincre sans moi.

® Soit n un entier supérieur ou égal a 2, supposons que la réciproque
vraie dans un C-espace vectoriel de dimension n — 1, et montrons
qu’elle est vraie dans un C-espace vectoriel de dimension n.
Placons-nous dans un C-espace vectoriel E de dimension n, et pre-
nons un endomorphisme u de E tel que tout sous-espace vectoriel de
E admet un supplémentaire stable par u.
Le polynéme caractéristique de u admet au moins une racine com-
plexe (encore par le théoréme de d’Alembert-Gauss), donc u admet
au moins une valeur propre. Notons e; un de ses vecteurs propres,
et D =Vect(e;).

o



Colles des semaines 9 & 10. Réduction des endomorphismes et matrices
carrées

Par hypothése, D admet un supplémentaire H stable par u, qui est
donc un hyperplan de E. Le sous-espace vectoriel H est un hyperplan
de E, autrement dit dim (H) =n — 1.

Notons alors u I'endomorphisme de H induit par u, et montrons que
uy; vérifie aussi la propriété suivante : « tout sous-espace vectoriel de
H admet un supplémentaire stable par uy ».

Notons aussi p la projection sur H parallelement a la droite vectorielle
D.

Soit F un sous-espace vectoriel de H.

Alors D + F est un sous-espace vectoriel de E, donc par hypothése
sur u, il existe un sous-espace vectoriel G supplémentaire de D + F
dans E, et stable par u.

On va montrer que p(G) est stable par uy, et que c’est un supplé-
mentaire de F dans H.
- Tout d’abord p(G) est bien un sous-espace vectoriel de H.
- Montrons qu'il est stable par u : soit x € p(G) alors il existe x, € G
tel que x = p(xy).
Par définition de p, x — p(x,) € D = Vect(e), donc il existe a € C
tel que x, = ae + p(xy).
En appliquant u, on obtient

u(xo) = au(e) + u(p(xo)) = au(e) + u(x).

En appliquant a présent p, on obtient

p(u(xq)) = 0g + p (u(x)).

Mais p(G) C H, donc x € H, ainsi comme H est stable par u, on
sait que u(x) € H, d’ott p (u(x)) = u(x).
Ainsi u(x) = p(u(xy)), et comme x, € G et G est stable par u,
on sait que u(xy) € G, et donc u(x), c’est-a-dire p(u(x,)) est bien
dans p(G), c.Q.F.D.

- Montrons que p(G) est un supplémentaire de F dans H.

»= Comme F C H et p(G) C H, il va sans dire que F + p(G) C H.
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Réciproquement, soit x € H, alors G étant un supplémentaire
de D+F dans E, il existe x; = be+xp € D+F et x5 € G tels
que x =(be + xp) + xg-

Alors d’une part p(x) = x car x € H; et d’autre part

p(x) =bp(e) + p(xp) + p(xg) = O + xg + p(xg) (car xy €F C H),

donc x e F+ p(G).
On a bien établi que H=F + p(G).

= Si x € FNp(G), alors x = p(xy) avec xy € G, mais x € F C H,
donc x = p(x). Ainsi p(x) = p(x,), donc x — x, € Ker(p) =D,
d’ot 'existence d'un ¢ € C tel que x = xy+ce.
Mais alors x, = x —ce, donc x, € D+F, or x, € Get Get D+F
sont en somme directe, donc x, = Og, puis x = p(xy) = O,
C.Q.F.D.

On peut donc appliquer 'hypothése de récurrence a uy;, qui permet
de conclure que uy est diagonalisable, autrement dit qu'il existe une
base % de H formée de vecteurs propres de uy, qui sont aussi des
vecteurs propres de E.

Dans ce cas la famille obtenue en concaténant la base (e) de D et
cette base B de H est une base de E puisque D et H sont supplé-
mentaires, et elle est formée de vecteurs propres de u, donc u est
diagonalisable.
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