
Colles des semaines 9 & 10. Réduction des endomorphismes et matrices
carrées

Le rapport du Jaury

(i). ß Diagonaliser une matrice A, c’est trouver une matrice diagonale D
(avec les valeurs propres sur la diagonale) et une matrice inver-
sible P (avec en colonnes les vecteurs propres respectifs aux va-
leurs propres) telles que A= P×D× P−1 ; comme dans la remarque
12.12.

ß Pour trouver les vecteurs propres de la matrice A associés à la valeur
propre λ, on doit résoudre AX= λX, mais il est hautement conseillé de
résoudre le système homogène équivalent (A−λIn)X= 0 , et ce en
appliquant la technique du pivot de Gauss avec des opérations
sur les lignes de la matrice (A−λIn) !

Le mieux étant d’obtenir cette forme de résolution :

(A−λIn)X= 0⇐⇒ · · · (pivot de Gauss) · · ·
⇐⇒ X= · · ·
⇐⇒ X ∈ Vect (�, . . .) ,

pour conclure que Eλ(A) = Vect (�, . . .).

(ii). Même si le premier réflexe pour trouver les valeurs propres d’une ma-
trice M est de chercher le polynôme caractéristique, il est parfois plus
facile de trouver les valeurs propres et leurs ordres de multiplicité par des
considérations comme

ß Peu d’élèves pensent à utiliser le fait que la trace de M est la
somme des valeurs propres (chaque valeur propre λ étant comp-
tée mλ fois) !
C’est pourtant un outil très utile, ne serait-ce que pour vérifier les
valeurs propres qu’on a trouvées, mais aussi pour trouver celles qui
restent quand on en a déjà d’autres (voir les exercices 5, 6, 8, 9).

ß la somme des termes de chaque ligne de M vaut � (le même résultat

pour toutes les lignes), donc M×
�

1
...
1

�
= �×
�

1
...
1

�
, ainsi � est une

valeur propre de M ;
ß la somme des termes de chaque colonne de M vaut �, donc la somme

des termes de chaque ligne de M> vaut �, ainsi d’après la remarque
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ci-dessus � est une valeur propre de M>, donc � est aussi une valeur
propre de M (mais on ne connaît pas a priori de vecteur propre associé) ;

ß on remarque une colonne où seul le terme de la diagonale est non
nul, etc, et d’en déduire le polynôme caractéristique.

(iii). Rappelons que la phrase « le polynôme caractéristique de� est scindé dans
K[X] » sert à dire que � a toutes ses valeurs propres dans K.
En particulier, si M ∈ M3(R) a un polynôme caractéristique qui n’est
pas scindé dans R, par exemple χM = X(X2 + 4), alors M a des valeurs
propres hors de R, c’est pour ça que M n’est pas diagonalisable dans
M3(R) (mais dans ce cas elle est quand même diagonalisable dansM3(C)
car χM = X(X− 2i)(X+ 2i) est scindé à racines simples dans C).

(iv). Bien comprendre que la proposition 12.16 est en deux parties :

ß la première partie affirme que si jamais on trouve un polynôme an-
nulateur de � scindé à racines simples, alors � est diagonalisable ;

ß la deuxième partie affirme qu’en particulier, � est diagonalisable si,
et seulement si, le polynôme

∏
λ∈Sp(�)

(X−λ) annule �.

(v). Attention ! Les notations mλ et dλ ne sont pas standard.

Un jour sans doute, elles seront connues sous le nom de notations de
Jaury, mais pour le moment l’humanité n’est pas prête.
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carrées

Questions de cours 1

1. Donner la définition d’une valeur propre d’un endomorphisme et d’une
matrice, ainsi que des ordres de multiplicité algébrique et géométrique.
Définitions 12.4 et 12.7.
Quelles inégalités y a-t-il entre ces deux ordres ?
Proposition 12.12.

2. Donner la relation entre les valeurs propres et la trace.
Voir le dernier résultat de la proposition 12.11.

3. Définir un endomorphisme diagonalisable, et une matrice diagonalisable.
Définitions 12.5 et proposition 12.14.

4. Dans un espace vectoriel de dimension finie, donner trois caractérisations
de la diagonalisabilité (dont une avec un polynôme annulateur).
Les propositions 12.15 et 12.16.

5. Donner une condition suffisante de diagonalisabilité.
Proposition 12.17

Exercice 1

Déterminer les valeurs propres et sous-espaces
propres de la matrice A. Est-elle diagonalisable ?
Déterminer les puissances de A.

A=

0 0 1
0 0 −1
1 −1 −1


Exercice 2

1. Diagonaliser A=
�

7 2
−4 1

�
, et en déduire l’expression de An.

2. On note (un)n∈N et (vn)n∈N les suites définies par u0 = v0 = 1 et

∀n ∈ N,
�

un+1 = 7un+ 2vn
vn+1 = −4un+ vn

Pour tout n ∈ N, déduire de la première question l’expression de un et vn
en fonction de n.
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Exercice 3

1. Diagonaliser la matrice A=
�

2 1
4 −1

�
.

2. En déduire que son commutant (c’est-à-dire l’ensemble des matrices qui
commutent avec A) est Vect (I2, A).

Exercice 4

1. Déterminer les valeurs propres et sous-
espaces propres de la matrice A ci-contre.
Est-elle diagonalisable ?

A=

1 −12 2
1 1 1
4 8 3


2. Montrer que la matrice B=

−1 0 0
0 3 1
0 0 3

 est semblable à A.

3. Déterminer Bn pour tout entier naturel n, et en déduire An.

Exercice 5

Soient (a, b) ∈ R2 et M=


a+ b a a− b a

a a+ b a a− b
a− b a a+ b a

a a− b a a+ b

.
Montrer que M est diagonalisable ; déterminer son spectre.

Exercice 6

On note Jn la matrice de Mn(R) dont tous les coefficients valent 1, et pour
tout (a, b) ∈ R2, on note M(a, b) la matrice dont les termes diagonaux valent
a, et dont les autres coefficients valent b.

1. Donner le rang et le polynôme caractéristique de Jn. Montrer que Jn est
diagonalisable et déterminer ses éléments propres.

2. En déduire que M(a, b) est diagonalisable, donner ses valeurs propres et
sous-espaces propres.
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Exercice 7

Soit A une matrice de Mn(C), avec n ¾ 3, de rang 2, de trace nulle et telle
que An 6= 0n.
Montrer que A est diagonalisable et donner son spectre.

Exercice 8

Soient n¾ 2 un entier pair et A=


1 n 1 · · · n
2 n− 1 2 · · · n− 1
3 n− 2 3 · · · n− 2
...

...
...

...
n 1 n · · · 1

 .
Déterminer le rang de A.
Montrer que A est diagonalisable et préciser ses éléments propres.

Exercice 9

Soient ß n ∈ N tel que n¾ 2,

ß A ∈ Mn(R) dont tous les termes valent 1 sauf ceux de la dia-
gonale qui sont nuls,

ß et l’application u : M ∈Mn 7→M+ tr(M)A.

1. Prouver que le polynôme X2− 2X+ 1 est annulateur de u.

2. L’endomorphisme u est-il diagonalisable ? Justifier votre réponse en utili-
sant deux méthodes (l’une avec, l’autre sans l’aide de la question 1.).

Exercice 10 –

Soit A ∈Mn(R) telle que A2+ In ne soit pas inversible.

1. Montrer qu’il existe X ∈Mn,1(C) tel que AX= iX et X 6= 0.
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2. Montrer que A est semblable sur R à une matrice de la forme
0 1
−1 0

B

0n−2,2 C

 , avec B ∈M2,n−2(R),
et C ∈Mn−2,n−2(R).

Exercice 11 – - Mines-Ponts 2019

On considère une suite complexe (an)n¾1 telle
que a2 6= 0.
Pour tout n ∈ N∗, on introduit la matrice An ci-
contre dont on note χn le polynôme caractéris-
tique :

An =


a1 a2 an
a2 0 0

an 0 0

.
1. Déterminer χ2 et χ3.

2. Montrer que χn est divisible par Xn−2.

3. On pose bn =
n∑

k=2

a2
k. Montrer alors que χn = Xn−2(X2− a1X− bn).

4. Selon que bn est nul ou non, étudier la diagonalisabilité de An.

Exercice 12 –

Soit A ∈Mn(C) une matrice diagonalisable et B=
�

0 A
In 0

�
∈M2n(C).

Donner les valeurs propres de B et la dimension des sous-espaces propres
correspondants.
À quelle condition B est-elle diagonalisable ?

Exercice 13 – - Mines-Ponts 2019

Soient E un C-espace vectoriel de dimension finie et u ∈ L (E).
Montrer que u est diagonalisable si et seulement si tout sous-espace vectoriel
de E admet un supplémentaire stable par u.
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Solutions

Une correction de l’exercice 1 énoncé
On voit que cette matrice est symétrique réelle, donc le théorème
spectral nous permet d’affirmer que cette matrice est diagonalisable.

Le polynôme caractéristique de la matrice A est :

χA(X) = det (XI3−A) =

������
X 0 −1
0 X 1
−1 1 X+ 1

������
L1← L1+ XL3− L2

=

������
0 0 −2+ X(X+ 1)
0 X 1
−1 1 X+ 1

������
= (−1)3+1(−1)

����0 −2+ X(X+ 1)
X 1

����
= X (−2+ X(X+ 1)) = X

�
X2+ X− 2
�

= X (X− 1)(X+ 2)) ,

donc A admet trois valeurs propres deux à deux distinctes qui sont 0, 1 et −2.
On peut en déduire que A est diagonalisable et que les trois sous-espaces
propres sont des droites vectorielles.
Les résolutions successives des systèmes AX= 0, (A−I3)X= 0 et (A+2I3)X= 0
donnent

E1(A) = Vect


 1
−1
1


, E0(A) = Vect


11

0


, E−2(A) = Vect


 1

1
−2


.

Ainsi A= PDP−1, avec P=

 1 1 1
−1 1 −1
1 0 −2

 et D=

1 0 0
0 0 0
0 0 −2

.
Puis par la méthode du pivot, ou méthode de Gauss-Jordan (on transforme
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avec des opérations sur les lignes (A|I3) en (I3|P−1)) on obtient

P−1 =

1/3 −1/3 1/3
1/2 1/2 0
1/6 −1/6 −1/3

.
Par récurrence, on montre que pour tout n ∈ N, An = PDnP−1, ce qui donne :

An =


1/3+ 1/6 (−2)n −1/3− 1/6 (−2)n 1/3− 1/3 (−2)n

−1/3− 1/6 (−2)n 1/3+ 1/6 (−2)n −1/3+ 1/3 (−2)n

1/3− 1/3 (−2)n −1/3+ 1/3 (−2)n 1/3+ 2/3 (−2)n

.
Une correction de l’exercice 2 énoncé
1. Le polynôme caractéristique de A est

(X− 7)(X− 1)− (−2)× 4= X2− 8X+ 15= (X− 5) · (X− 3),

donc les valeurs propres de A sont 3 et 5.

La résolution de (A− 3I2)X = 0 donne E3(A) = Vect
��

1
−2

��
, et celle de

(A− 5I2)X= 0 donne E5(A) = Vect
��

1
−1

��
.

2. La matrice A est dansM2(R) et possède 2 valeurs propres distinctes, donc
elle est diagonalisable.

De plus, d’après les calculs précédents, en notant P =
�

1 1
−1 −2

�
et D =�

3 0
0 5

�
, on a la diagonalisation suivante de A :

A= P×D× P−1,

dont on tire par récurrence que pour tout n ∈ N,
An = PDnP−1

=
�

1 1
−1 −2

��
3n 0
0 5n

��
2 1
−1 −1

�
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3. (a) De manière évidente, pour tout n ∈ N, Xn+1 = AXn.
(b) On en déduit par récurrence que pour tout n ∈ N,�

un
vn

�
= Xn = AnX0

=
�

1 1
−1 −2

��
3n 0
0 5n

��
2 1
−1 −1

�
×
�

1
1

�
=
�

3n+1− 2× 5n

−3n+1+ 4× 5n

�

Une correction de l’exercice 3 énoncé
1. On obtient le polynôme caractéristique χA = (X−3)(X+2) et donc SpA=
{−2,3}.
Après résolution des équations AX= 3X et AX= −2X, on obtient :

E3 = Vect
��

1
1

��
et E−2 = Vect
��

1
−4

��
.

On peut donc conclure que

A=
�

1 1
1 −4

�
︸ ︷︷ ︸

=P

×
�

3 0
0 −2

�
︸ ︷︷ ︸

=D

×P−1,

sachant que la méthode de Gauss-Jordan nous donne

P−1 = −1

5

�
4 1
1 −1

�
.

2. Notons C (A) le commutant de A.

ß Il est évident que I2 et A sont dans C (A), et je vous laisse prouver
que C (A) est stable par combinaison linéaire, donc on a l’inclusion
Vect (I2, A)⊂C (A).
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ß Réciproquement, soit M ∈M2(R),

M ∈ C (A)⇐⇒ AM=MA⇐⇒ (PDP−1)M=M(PDP−1)

⇐⇒ D× (P−1MP) = (P−1MP)×D (en multipliant à gauche
par P−1 et à droite par P).

⇐⇒ D×
�

a b
c d

�
=
�

a b
c d

�
×D

(en posant

P−1MP=
�

a b
c d

�
)

⇐⇒
§ −2b = 3b

3c = −2c
⇐⇒ b = c = 0

⇐⇒ P−1MP=
�

a 0
0 d

�
⇐⇒M= P
�

a 0
0 d

�
P−1

⇐⇒M= a
1

5

�
4 1
4 1

�
︸ ︷︷ ︸

=U

+d
1

5

�
1 −1
−4 4

�
︸ ︷︷ ︸

=V

⇐⇒M ∈ Vect (U,V) .

Ainsi C (A) = Vect (U,V), et les matrices U et V n’étant pas coli-
néaires, on peut conclure que (U,V) est une base de C (A), et donc
que dim (C (A)) = 2.

ß Comme Vect (I2, A) et C (A) sont de même dimension, et que l’un est
inclus dans l’autre, on peut conclure qu’ils sont égaux.
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Une correction de l’exercice 4 énoncé
1. Le polynôme caractéristique de A est

χA(x) = det(xI3−A)

=

������
x − 1 12 −2
−1 x − 1 −1
−4 −8 x − 3

������
L1← L1+ (x − 1)L2

L3← L3− 4L2

=

������
0 12+ (x − 1)2 −x − 1
−1 x − 1 −1
0 −4(x + 1) x + 1

������
= −(−1)

����12+ (x − 1)2 −x − 1
−4(x + 1) x + 1

����
= (x + 1)

����12+ (x − 1)2 −x − 1
−4 1

����
= (x + 1)
h

12+ (x − 1)2− (−4)(−x − 1)
i

= (x + 1)
h

12+ (x2− 2x + 1)− 4x − 4
i

= (x + 1)
h

x2− 6x + 9
i
= (x + 1)(x − 3)2.

Donc A admet deux valeurs propres : 3 est valeur propre d’ordre 2, et 1
est valeur propre d’ordre 1.
En résolvant (A − 3I3)X = 0 et (A + I3)X = 0, on obtient E3( f ) =
Vect(−2,1,4) et E−1( f ) = Vect(−1,0,1).
La somme des dimensions des sous-espaces propres ne donne pas 3 qui
est la dimension de R3, donc A n’est pas diagonalisable.

2. On doit montrer qu’il existe une base (e1, e2, e3) de R3 dans laquelle A (ou
plutôt l’endomorphisme uA canoniquement associé à A) a pour matrice B,
autrement dit

Mat
(e1,e2,e3)

(uA) =


Ae1 Ae2 Ae3−1 0 0 e1
0 3 1 e2
0 0 3 e3


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ce pourquoi il faut que( Ae1 = −e1
Ae2 = 3e2
Ae3 = e2+ 3e3

⇐⇒
( (A+ I3)e1 = 0
(A− 3I3)e2 = 0
(A− 3I3)e3 = e2

On prend pour les deux premiers vecteurs les deux vecteurs propres e1 =
(−1,0,1) et e2 = (−2,1,4) respectivement associés à −1 et 3 que l’on a
trouvé dans la première question.
Enfin, en résolvant le système de matrice augmentée (A − 3I3|e2), on
constate que le vecteur e3 = (1,0,0) convient.
On vérifie de nouveau que (e1, e2, e3) est une base de R3 de la façon de
notre choix, par exemple en calculant le déterminant dans la base cano-
nique de la famille : ������

−1 −2 1
0 1 0
1 4 0

������
qui vaut −1 en développant par la dernière colonne.
D’où c.q.f.d.

3. ß Par récurrence, on montre que pour tout n ∈ N, Bn est de la forme

Bn =

(−1)n 0 0
0 3n un
0 0 3n


avec u0 = 0, u1 = 1, et pour tout n ∈ N, un+1 = 3un+3, donc on déduit
(suite arithmético-géométrique) que pour tout n ∈ N, un =

3
2
×(3n−1).

ß Par la formule de changement de base, on pose P = MatC (e1, e2, e3),
et alors

A=MatC ( f ) = P× B× P−1

ß Puis par récurrence (ou par changement de base pour f n remar-
quons !), pour tout n ∈ N,

An = P× Bn× P−1
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et je vous laisse faire le calcul qui donne

P−1 =

0 −4 1
0 1 0
1 −2 1


et

An =

 4× 3n− 3 −10× 3n+ 4 (−1)n+ 6 4× 3n− (−1)n− 3
−3

2
× 3n+ 3

2
4× 3n− 3 −3

2
× 3n+ 3

2−6× 3n+ 6 16× 3n− 4 (−1)n− 12 −6× 3n+ (−1)n+ 6


ce qui est vraiment super chouette.

Une correction de l’exercice 5 énoncé
La matrice M est diagonalisable car elle est symétrique réelle.

Méthode empirique

L’observation de la somme des termes de chaque ligne de M nous permet
d’avancer que

M×
1

1

 = 4a

1
1

,
donc 4a est une valeur propre de M et

1
1

 est un vecteur propre associé.

Puis avec encore plus d’astuce en additionnant la première et la troisième
colonne, ainsi que la deuxième et la quatrième :

M×


1
−1
1
−1

 = 0,
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donc 0 est valeur propre, puis

M×


1
−1
−1
1

 = 2b


1
−1
−1
1

, et M×


1
1
−1
−1

 = 2b


1
1
−1
−1

,
donc 2b est valeur propre, d’ordre de multiplicité géométrique au moins 2.
On en déduit que le spectre de M est {0,4a,2b }, avec les ordres de multiplicité
géométriques et algébrique respectivement égaux à 1,1,2.

Autre méthode

Calculons le polynôme caractéristique de M : l’opération élémentaire L1 ←
L1+ L2+ L3+ L4 donne :

χM(λ) =

��������
a+ b−λ a a− b a

a a+ b−λ a a− b
a− b a a+ b−λ a

a a− b a a+ b−λ

��������
= (4a−λ)

��������
1 1 1 1

a− b a+ b−λ a a− b
a− b−λ a

a a− b a a+ b−λ

��������
Ensuite les opérations Li ← Li − aL1 pour i = 2,3,4 donnent :

χM(λ) = (4a−λ)

��������
1 1 1 1
0 b−λ 0 −b
−b 0 b−λ 0
0 −b 0 b−λ

��������
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Enfin avec les opérations C3← C3−C1 et C4← C4−C2 il vient :

χM(λ) = (4a−λ)

��������
1 1 0 0
0 b−λ 0 −2b+λ
−b 0 2b−λ 0
0 −b 0 2b−λ

��������
= (4a−λ)(2b−λ)2

��������
1 1 0 0
0 b−λ 0 −1
−b 0 1 0
0 −b 0 1

��������
= (4a−λ)(2b−λ)2

������
1 1 0
0 b−λ −1
0 −b 1

������= λ(λ− 4a)(λ− 2b)2.

Les valeurs propres de M sont donc dans le cas général où 0,2b et 4a sont
distincts (c’est-à-dire a 6= 0, b 6= 0 et b 6= 2a) : 0 et 4a valeurs propres simples
et 2b valeur propre double.

Une correction de l’exercice 6 énoncé
1. ß Première méthode : Le rang de cette matrice est 1, donc son noyau

(en vérité c’est le noyau de son endomorphisme canoniquement associé)
est de dimension n − 1, ce qui revient à dire que 0 est une valeur
propre de Jn d’ordre de multiplicité géométrique n−1, et d’ordre de
multiplicité algébrique supérieur ou égal à n− 1.
Par conséquent, Xn−1 divise le polynôme caractéristique χJn

qui est
unitaire de degré n, donc se factorise donc sous la forme

χJn
(X) = Xn−1(X−λ), où λ ∈ C.

Autre méthode : χJn
(X) = Xn−1(X−λ), où λ ∈ C.

ß Ce polynôme caractéristique est scindé dans C[X], donc on sait que la
trace de Jn, c’est-à-dire n, est égale à la somme des valeurs propres, qui
vaut ici λ. On en déduit donc que λ = n, puis que χJn

(X) = Xn−1(X−n),
et enfin que 0 est valeur propre d’ordre de multiplicité algébrique n−1,
et n valeur propre d’ordre 1.
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La somme des termes de chaque ligne donne n, d’où

Jn ×


1
1

1

 = n×


1
1

1


ce qui donne une autre manière de prouver que n est valeur

propre de Jn, et que

�
1
...
1

�
est un vecteur propre associé.

ß On sait déjà que dim(E0(Jn)) = n− 1.
D’autre part, n est valeur propre de Jn d’ordre de multiplicité algébrique
1, donc dim(En(Jn)) = 1,

Rappelons que l’égalité entre l’ordre de multiplicité géomé-
trique, c’est-à-dire la dimension du sous-espace propre, et
l’ordre de multiplicité algébrique est toujours vraie pour les va-
leurs propres simples, c’est-à-dire les valeurs propres d’ordre
de multiplicité algébrique 1.

et par conséquent Jn est diagonalisable.
ß On remarque que les n− 1 vecteurs E1 − Ei, où les Ei forment la base

canonique deMn,1(R), pour i ∈ J2, nK sont dans E0(Jn) et forment une
famille libre, donc une base de E0(Jn).
D’autre part, on a vu que la colonne C remplie de 1 est dans En(Jn) qui
est de dimension 1, donc En(Jn) = Vect(C).

ß En conclusion, Jn est diagonalisable de la façon suivante :

Jn =


1 1 1 1
−1 0 0 1
0

0
0 0 −1 1

︸ ︷︷ ︸
=P

×


0 0 0
0

0 0
0 0 n

︸ ︷︷ ︸
=D

×P−1.

Ou, ce qui revient au même, P−1× Jn× P= D.
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2. On remarque que M(a, b) = bJn+ (a− b)In, donc

P−1×M(a, b)× P= P−1�bJn+ (a− b)In
�
P

= bP−1JnP+ (a− b)P−1InP= b D+ (a− b)In

= Diag
�

a− b, . . . , a− b︸ ︷︷ ︸
n−1 fois

, a+ (n− 1)nb
�

.

On en déduit que M(a, b) est diagonalisable, que ses valeurs propres sont
a − b d’ordre n− 1, et a + (n− 1)b d’ordre 1, avec la même matrice de
passage P, donc les même sous-espaces propres que Jn : Ea−b(M(a, b)) =
E0(Jn), et Ea+(n−1)b(M(a, b)) = En(Jn).

Une correction de l’exercice 7 énoncé
ß Par le théorème du rang, E0(A) = Ker(A) est de dimension n − 2, donc
χA(X) = Xn−2Q, avec deg(Q) = 2 (mais rien n’empêche a priori Q de s’annu-
ler en 0).

ß Soient a et b les autres racines, éventuellement complexes, de Q, alors

χA = Xn−2(X− a)(X− b),

et

Tr(A) = (n− 2)× 0+ a+ b,

d’où a = −b car Tr(A) = 0.
ß Si a = b = 0, alors le polynôme caractéristique de A est Xn, mais alors

le théorème de Cayley-Hamilton nous dit que An = 0n, ce qui contredit
l’énoncé.
Ainsi a est non nul.

ß On en déduit que a et −a sont deux valeurs propres distinctes, non nulles
et comme 0 est déjà d’ordre de multiplicité algébrique au moins n− 2, a
et −a sont des valeurs propres simples, c’est-à-dire d’ordre de multiplicité
algébrique 1.
Ainsi χA est scindé, et les 3 sous-espaces propres ont une dimension égale
à l’ordre de multiplicité de la valeur propre correspondante, donc A est
diagonalisable.
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Une correction de l’exercice 8 énoncé
On commence par remarquer que la définition de la matrice
impose que n soit un entier pair.

ß Il est clair que rg(A) = 2 donc par le théorème du rang 0 est valeur propre
d’ordre de multiplicité géométrique n− 2, et par un coup d’œil affuté :

Ker (A) = Vect





1
0
−1
0

0


,



0
1
0
−1
0

0


, . . . ,



0

0
1
0
−1




ß On remarque que la somme des lignes est constante et vaut n(n+1)

2
donc

n(n+1)
2

est valeur propre et

1
1

 est un vecteur propre associé.

ß Comme Tr (A) = n2

2
, la dernière valeur propre λ (fut-elle en théorie com-

plexe, ou égale à une des deux précédentes) vérifie

(n− 2)× 0+
n(n+ 1)

2
+λ =

n2

2
,

d’où λ = − n
2
.

ß Ainsi A admet pour valeurs propres 0 à l’ordre de multiplicité géométrique
n−2, et deux autres valeurs propres n(n+1)

2
et − n

2
, non nulles et distinctes

entre elles.
Ainsi, comme les sous-espaces propres sont en somme directe dans Rn, les
sous-espaces propres associés à n(n+1)

2
et − n

2
sont des droites vectorielles.

En particulier, on sait déjà que

E n(n+1)
2
(A) = Vect


1

1


 .
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Donc il nous suffit donc de trouver un vecteur propre particulier de S as-
socié à la valeur propre − n

2
.

ß Si X=

x1

xn

 est un tel vecteur propre, alors SX= − n
2
X, ce qui équivaut à

∀k ∈ J1 ; nK, k× x1+ (n− k+ 1)× x2+k× x3+ . . .

. . .+ (n− k+ 1)× xn = −n

2
xk

Notons A, resp.B, la somme des coefficients d’indices impairs, resp.pairs,

de X. Remarquons en passant que A+ B=
n∑

k=1
xk.

Alors SX= − n
2
X équivaut à

∀k ∈ J1 ; nK, k×A+ (n− k+ 1)× B= −n

2
xk.

En additionnant ces égalités pour k de 1 à n, on obtient
n∑

k=1

k A+
n∑

k=1

(n− k+ 1) B= −n

2

n∑
k=1

xk = −n

2
(A+ B)

c’est-à-dire
n(n+ 1)

2
A+

n(n+ 1)
2

B= −n

2
(A+ B)

d’où A+ B= 0, donc B= −A.

Ainsi

SX= −n

2
X⇐⇒∀k ∈ J1 ; nK, k×A− (n− k+ 1)×A= −n

2
xk

⇐⇒∀k ∈ J1 ; nK, xk =
2A

n
(2k− n− 1))

⇐⇒ X=
2A

n



−(n− 1)
−(n− 3)

−1
+1

+(n− 1)


.
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Ainsi ce dernier vecteur colonne ci-dessus est un vecteur propre de A as-
socié à la valeur propre − n

2
, et il forme à lui tout seul une base de E− n

2
(A).

Une correction de l’exercice 9 énoncé
Soit n ∈ N tel que n¾ 2.

La matrice A a pour terme général ai, j =
�

0, si i = j,
1, si i 6= j. .

1. Prouvons que P = X2 − 2X+ 1 est annulateur de u c’est-à-dire que P(u) =
0Mn(R), autrement dit que pour tout M ∈Mn(R), P(u)(M) = 0n.
On remarque que

u2(M) = u ◦ u(M) = (M+ tr(M)A) + tr (M+ tr(M)A)A

=M+ tr(M)A+ tr(M)A+ tr(M)tr(A)A (par linéarité de la trace)

=M+ 2tr(M)A (car Tr (A) = 0).

Ainsi

u2(M)− 2u(M) + Id(M) =M+ 2tr(M)A− 2M− 2tr(M)A+M

= 0n c.q.f.d.

2. Le polynôme P= (X− 1)2 est annulateur de u, donc SpR(u)⊂ {1}.
Or u(A) = A et A 6= 0n donc 1 est bien valeur propre, et SpR(u) = {1}.
Si u est diagonalisable alors d’après le cours, (X − 1) est un polynôme
annulateur de u, autrement dit u− idMn(R) est l’endomorphisme nul, donc
u= idMn(R), ce qui n’est pas.
Donc u n’est pas diagonalisable.

3. Soit λ une valeur propre de u, alors il existe une matrice non nulle M
telle que u(M) = λM, c’est-à-dire M+ Tr (M)A = λM, ce qui entraîne que
(λ− 1)M= Tr (M)A.

ß Si λ = 1, alors u(M) = M si, et seulement si, Tr (M) = 0, et comme
la trace est une forme linéaire non nulle surMn(R), on en déduit que
son rang vaut 1, donc grâce au théorème du rang que son noyau est
de dimension n2− 1.
Donc 1 est valeur propre de u d’ordre de multiplicité géométrique n2−
1.
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ß Si λ 6= 1, alors u(M) = λM⇐⇒M= Tr(M)
λ−1

A=⇒M ∈ Vect (A).
On va donc chercher des solutions sous la forme M = cA, où c ∈ R.
On remarque en particulier que comme Tr (A) = 0, par linéarité de la
trace, Tr (M) = c × Tr (A) = 0, et donc que u(M) =M.
On a donc

u(M) = λM⇐⇒
§

M= λM
∃µ ∈ R, M= µA

⇐⇒
§
(1−λ)M= 0n∃µ ∈ R, M= µA

⇐⇒M= 0n (car λ 6= 1)

donc λ n’est pas valeur propre de u.

On a donc prouvé que 0 est la seule valeur propre de u et que son ordre de
multiplicité géométrique est n2 − 1, et celle-ci étant strictement inférieure
à dim (Mn(R)) = n2, on peut conclure que u n’est pas diagonalisable.

Une correction de l’exercice 10 énoncé
ß La matrice A2+ In elle n’est pas inversible, donc

det
�

A2+ In

�
= 0,

or A2+ In = (A− iIn) (A+ iIn), d’où par propriété du déterminant

det (A− iIn)det (A+ iIn) = 0.

Ainsi l’un des deux facteurs de ce produit est nul, ce qui prouve que i, ou
−i est valeur propre de A.

J’espère qu’il est clair qu’un scalaire λ est valeur propre de � si, et
seulement si, �−λ idE n’est pas inversible (ou bijectif).

Mais comme A est une matrice à coefficients réels, on en déduit que i ET
−i sont valeurs propres de A, donc en particulier qu’il existe X non nul
dansMn,1(C) tel que

ß On écrit le vecteur X de la question (a) sous la forme U+iV avec U et V dans
M1,n(R). La relation AX = iX se traduit alors par A(U+ iV) = i(U+ iV),
c’est-à-dire par

AU= −V

AV= U.
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Il est impossible que U ou V soit nul, sinon U et V le seraient, donc X serait
nul, ce qui n’est pas le cas. Par suite, si (U,V) est une famille liée, on peut
supposer sans perte de généralité que U= kV avec k ∈ R. De la première
équation ci-dessus, on tire AV = −V/k, et de la seconde, AV = kV, d’où
l’on déduit
�
1+ k2�V = 0, donc V = 0 (puisque k est réel), mais on vient

de voir que cela est impossible. La famille (U,V) est donc libre, et on peut
compléter cette famille pour former une base de Rn, identifié ici àMn,1(R).
Les deux relations AU = −V et AV = U montrent que A est semblable à
une matrice de la forme décrite dans l’énoncé.

Une correction de l’exercice 11 énoncé
1. χ2(X) = X(X− a1)− a2

2, χ3(X) = X3− a1X2+
�−a2

2 − a2
3

�
X.

2. Comme a2 6= 0, rg(An) = 2, donc par le théorème du rang dim(Ker(An)) =
n − 2, donc 0 est valeur propre de An pour n ¾ 3 avec pour ordre de
multiplicité m0 ¾ n− 2. Ainsi (X− 0)n−2 = Xn−2 divise χn.

3. Récurrence en développant selon la dernière colonne.

4. ß Si bn = 0, alors χn = Xn−1(X − a1), donc 0 est valeur propre de An
d’ordre n − 1 strictement supérieur à la dimension du sous-espace
propre associé, donc An n’est diagonalisable.

ß Si bn 6= 0, alors X2 − a1X − bn est un polynôme du second degré de
discriminant ∆ = a2

1 + 4b2
n > 0 (car a2 6= 0), donc il admet deux racines

α et β réelles distinctes, et non nulles.
Ainsi χn est scindé dans R[X], et les ordres de multiplicité de ses valeurs
propres 0, α et β sont n− 2, 1 et 1, donc sont égales aux dimensions
de sous-espaces propres, donc An est diagonalisable.

Une correction de l’exercice 12 énoncé
Soit X=
�x

y

�
, et soit λ ∈ C. Alors on a :

BX= λX ⇐⇒
�

Ay = λx
x = λy

⇐⇒
�

Ay = λ2 y
x = λy

Ainsi, λ est valeur propre de B si et seulement si λ2 est valeur propre de A.
On a aussi prouvé ci-dessus que l’application Eλ2(A) → Eλ(B) définie par
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y 7→
�
λy
y

�
est une bijection, et donc dim(Eλ(B)) = dim(Eλ2(A)).

Puisque A est diagonalisable, on sait que

p∑
i=1

dim(EA(µi)) = n,

où µ1, . . . ,µp sont les valeurs propres de A. Si µi 6= 0 pour tout i, chaque µi
admet deux racines carrés complexes distinctes ±λi, et on a

p∑
i=1

dim(EB(λi)) +
p∑

i=1

dim(EB(−λi)) = 2
p∑

i=1

dim(EA(λ
2
i )) = 2n,

et donc B est diagonalisable.
Au contraire, si µ1 = 0, alors on obtient une seule carrée, qui vaut 0, et la
somme des dimensions des sous-espaces propres de B vaut

dim(E1) + 2
p∑

i=2

dim(Eµi
) = 2n− dim(E1)< 2n.

On en conclut que B est diagonalisable si et seulement si 0 n’est pas valeur
propre de A.

Une correction de l’exercice 13 énoncé
ß Supposons que u est diagonalisable, alors il existe une base (e1, . . . , en) de

E formée de vecteurs propres de u.
Soit F un sous-espace vectoriel de E, de base (x1, . . . , xp), grâce au théo-
rème de la base incomplète, on complète cette famille libre (x1, . . . , xp)
avec n− p vecteurs pris dans la base (e1, . . . , ep) pour obtenir une nouvelle
base de E.
On peut noter cette base (x1, ..., xp, y1, ..., yn−p).
Ainsi G= Vect(y1, ..., yn−p) est un sous-espace vectoriel supplémentaire de
F stable par u.

ß Pour la réciproque
Première méthode : par l’absurde. Supposons que u n’est pas diagona-
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lisable, et trouvons un sous-espace vectoriel qui n’a pas de supplémen-
taire stable par u.
L’endomorphisme u n’est pas diagonalisable, donc

F=
⊕
λ∈Sp(u)

Eλ(u)

est un sous-espace vectoriel de E différent de E.
Prenons alors un supplémentaire G de F dans E, et montrons que G
n’est pas stable par u.
De nouveau par l’aburde, supposons que G est stable par u, alors u induit
un endomorphisme de G que l’on note uG. Comme G est de dimension
au moins 1, le polynôme caractéristique de uG est de degré au moins
1, donc il admet au moins une racine dans C (c’est le théorème de
d’Alembert-Gauss !), et cette racine est alors une valeur propre de uG.
Il existe alors un vecteur non nul x dans G tel que uG(x) = λx, mais
par définition de uG, uG(x) = u(x), donc u(x) = λx, donc λ est valeur
propre de u, et x ∈ Eλ(u), donc par définition de F, x ∈ F.
Avoir supposé que G est stable par u nous a donc permis de construire
un vecteur non nul qui est dans F∩G, ce qui contredit le fait que G est un
supplémentaire de F dans E. Donc G n’est pas stable par u, et l’exercice
est bouclé.

Deuxième méthode : par récurrence sur la dimension de E. Si
dim (E) = 1, quel que soit l’endomorphisme u de E, quoi que l’on
suppose sur les sous-espaces vectoriels de E stables ou non, u est
diagonalisable, je vous laisse vous en convaincre sans moi.
Soit n un entier supérieur ou égal à 2, supposons que la réciproque
vraie dans un C-espace vectoriel de dimension n− 1, et montrons
qu’elle est vraie dans un C-espace vectoriel de dimension n.
Plaçons-nous dans un C-espace vectoriel E de dimension n, et pre-
nons un endomorphisme u de E tel que tout sous-espace vectoriel de
E admet un supplémentaire stable par u.
Le polynôme caractéristique de u admet au moins une racine com-
plexe (encore par le théorème de d’Alembert-Gauss), donc u admet
au moins une valeur propre. Notons e1 un de ses vecteurs propres,
et D= Vect (e1).
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Par hypothèse, D admet un supplémentaire H stable par u, qui est
donc un hyperplan de E. Le sous-espace vectoriel H est un hyperplan
de E, autrement dit dim (H) = n− 1.
Notons alors uH l’endomorphisme de H induit par u, et montrons que
uH vérifie aussi la propriété suivante : « tout sous-espace vectoriel de
H admet un supplémentaire stable par uH ».
Notons aussi p la projection sur H parallèlement à la droite vectorielle
D.
Soit F un sous-espace vectoriel de H.
Alors D+ F est un sous-espace vectoriel de E, donc par hypothèse
sur u, il existe un sous-espace vectoriel G supplémentaire de D+ F
dans E, et stable par u.
On va montrer que p(G) est stable par uH, et que c’est un supplé-
mentaire de F dans H.

Tout d’abord p(G) est bien un sous-espace vectoriel de H.
Montrons qu’il est stable par u : soit x ∈ p(G) alors il existe x0 ∈ G
tel que x = p(x0).
Par définition de p, x − p(x0) ∈ D = Vect (e), donc il existe a ∈ C
tel que x0 = ae+ p(x0).
En appliquant u, on obtient

u(x0) = au(e) + u(p(x0)) = au(e) + u(x).

En appliquant à présent p, on obtient

p(u(x0)) = 0E+ p
�
u(x)
�
.

Mais p(G) ⊂ H, donc x ∈ H, ainsi comme H est stable par u, on
sait que u(x) ∈ H, d’où p

�
u(x)
�
= u(x).

Ainsi u(x) = p(u(x0)), et comme x0 ∈ G et G est stable par u,
on sait que u(x0) ∈ G, et donc u(x), c’est-à-dire p(u(x0)) est bien
dans p(G), c.q.f.d.
Montrons que p(G) est un supplémentaire de F dans H.

ß Comme F⊂ H et p(G)⊂ H, il va sans dire que F+ p(G)⊂ H.
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Réciproquement, soit x ∈ H, alors G étant un supplémentaire
de D+ F dans E, il existe x1 = b e+ xF ∈ D+ F et xG ∈ G tels
que x = (b e+ xF) + xG.
Alors d’une part p(x) = x car x ∈ H ; et d’autre part

p(x) = b p(e) + p(xF) + p(xG) = 0E+ xF+ p(xG) (car xF ∈ F⊂ H),

donc x ∈ F+ p(G).
On a bien établi que H= F+ p(G).

ß Si x ∈ F∩ p(G), alors x = p(x0) avec x0 ∈ G, mais x ∈ F ⊂ H,
donc x = p(x). Ainsi p(x) = p(x0), donc x − x0 ∈ Ker (p) = D,
d’où l’existence d’un c ∈ C tel que x = x0+ c e.
Mais alors x0 = x− c e, donc x0 ∈ D+F, or x0 ∈ G et G et D+F
sont en somme directe, donc x0 = 0E, puis x = p(x0) = 0E,
c.q.f.d.

On peut donc appliquer l’hypothèse de récurrence à uH, qui permet
de conclure que uH est diagonalisable, autrement dit qu’il existe une
base B de H formée de vecteurs propres de uH, qui sont aussi des
vecteurs propres de E.
Dans ce cas la famille obtenue en concaténant la base (e) de D et
cette base B de H est une base de E puisque D et H sont supplé-
mentaires, et elle est formée de vecteurs propres de u, donc u est
diagonalisable.
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