
DS 2. (Lundi 6 octobre 2025)

Le rapport du Jaury

Mes abréviations

« TE » : Type-Error ;

« AI » : argumentation insuffisante ;

« VC » : voir le corrigé ;

« AR » : améliorer la rédaction ;

« ASP » : affirmation sans preuve ;

« CP » : je ne comprends pas ;

«MF » : mauvaise foi ;

« N’importe quoi ! » : n’importe quoi !

ß Les questions marquées par un font partie de la voiture balai de la difficulté
mathématique de PC ;
tandis que les questions marquées par un sont des questions très classiques et
récurrentes...

ß Lorsque vous superposez des lignes de calcul, il est nécessaire de faire figurer des
liens logiques entre ces lignes, comme :

– des « ⇐⇒ » ou « ⇒ » directement dans les mathématiques,
– ou bien des mots en français comme « donc », « d’où », « ainsi », « par consé-

quent », etc.

D’ailleurs, le symbole « ⇒ » n’a rien à faire en début de ligne, ou au sein d’une
phrase en français.

Remarques générales :

ß Trop de copies sont difficilement lisibles. Faites un effort car la personne qui
corrigera vos copies au concours n’en fera aucun. Si nous sommes d’accord
pour affirmer que vous n’êtes ni plus maladroits ni plus stupides que les élèves
d’il y a 30 ans qui écrivaient (en majorité) mieux avec moins de fautes d’ortho-
graphe, il ne vous reste plus qu’à le prouver.

ß De même qu’on met des parenthèses autour de un si on veut parler de la suite,
ou un

∑
devant un su on veut parler de la série, on met « t 7→ » devant f (t)

ou « x 7→ » devant f (x) si on veut parler de l’application !

dire «
� sin(t x)

αx

�b
» est continue est impossible à comprendre.

ß Quand vous empilez des (in)égalités les unes en dessous des autres, il faut mettre
des liens logiques entre elles, des implications (ou en français « donc » et ses
synonymes), ou des équivalences dans le cas où c’est nécessaire.
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ß Dans la plupart des copies, les questions du type « montrer qu’il existe … »
(comme les questions 2 et 3 du problème 2) sont très mal traitées, avec souvent
des raisonnements du type “du yéti”.
Je vous invite à bien étudier toutes ces questions (dans ce devoir comme dans
tous les exercices de l’année) qui demandent de prouver l’existence d’un ou plu-
sieurs objets mathématiques, ainsi que les résultats du cours dont la conclusion
est l’existence d’objets mathématiques.

ß Quand on étudie la limite d’une fonction en un point a, séparer les limites « à
gauche » et « à droite » n’a d’intérêt que si la fonction a des expressions, ou a
priori des comportements, différents en dessous de a et au dessus de a.

ß Dire que deux expressions un et vn sont égales, ou l’une inférieure à l’autre,
quand n tend vers +∞ n’a pas de sens en général.
On peut comparer leurs limites si elles en ont, mais pas les expressions elles-
mêmes.

la phrase « un =
n→+∞ vn » n’a de sens que si il y a un reste sous forme de petit

o ou grand O quelque part,
« quand n → +∞, wn ¶ wn+1 ¶ wn » ne veut rien dire. Je rappelle que
wn ¶ wn+1 ¶ wn entraîne que wn = wn+1 et rien d’autre d’autre.

ß Quand une intégrale généralisée
∫ b

a
f (t)dt a un problème à ses deux bornes

(autrement dit lorsque f est continue sur ]a ; b[ mais pas en a et b), il faut
arrêter de parler de la relation de Chasles, qui n’a qu’un rapport très lointain
avec la définition de la convergence d’une telle intégrale.(Même si je sais que la
relation de Chasles est tellement facile à retenir qu’elle est devenue le doudou de
l’élève angoissé par les maths.)

ß Rien à faire, un phrase qui contient « …est intégrable donc convergente » ne
peut pas être correcte.

ß La phrase « ∀t ∈ �0 ; π
2

�
, cos(t) est continue » ne veut rien dire.

ß L’équivalent « cos(t) ∼
t→0

1− 1
2

t2 » n’est pas faux car le rapport des deux tend

bien vers 1, mais le terme 1
2

t2 ne sert à rien ; cos(t) est aussi équivalent en 0 à
1+ 40t −πt2, voire à toute expression de la forme 1+ o (1). Donc quand on
écrit un équivalent, on ne garde que le terme dominant !

ß Je rappelle que pour écrire un équivalent d’un produit et d’un rapport de
termes, on peut remplacer toute expression par sa limite si elle est non nulle.
En particulier ei t x ∼

x→0
1.

ß
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Je vous rappelle que s’efforcer de traduire sur son brouillon les questions
sous la forme « Supposons que …montrons que … » est un bon moyen
de limiter les égarements.
Il est toujours aussi important de savoir à tout moment de quoi on parle,
quel sens ont les mots employés, quelle est la nature des objets mathé-
matiques que l’on est entrain de manipuler, etc. Ça permettra d’éviter
les pires absurdités comme par exemple de prendre un vecteur « dans »
dans une application, ou autres joyeusetés que certain-e-s m’ont offertes
dans le problème 2.

Grossières erreurs mathématiques :
ß Ne pas confondre E= F+G et E= F∪G !
ß Attention à ne pas croire que pour tout endomorphisme u ∈ L (E), Ker (u)⊕
Im (u) = E !

ß « lim
n→+∞un = lim

n→+∞ vn, donc un ∼n→+∞ vn » ;

ß « un > 0 donc lim
n→+∞un > 0 » ;

ß « sin(t)
t
−−−−→
t−→+∞ 0, donc

∫ +∞
1

sin(t)
t

dt converge » ;

ß «
∫ +∞

1
1
x2 dx ».

Exercice 1

1. Montrer que l’intégrale
∫ +∞

0
sin(x)

x
d x existe.

On admet alors que

∫ +∞
0

sin(x)
x

d x =
π

2
·

2. (a) Montrer que pour tout α strictement positif, et pour tout réel x, l’appli-
cation t 7→ 1−cos(αt)

t2 e−i t x est prolongeable par continuité en 0.

(b) Montrer que pour tout α strictement positif, et pour tout réel x, l’appli-
cation t 7→ 1−cos(αt)

t2 e−i t x ainsi prolongée est intégrable sur R.

3. Pour tout réel α > 0 et tout réel x, on note I=

∫ +∞
−∞

1− cos(αt)
t2 e−i t xd t.

(a) Montrer que I est un réel.

(b) Soit A> 0 et B> 0, justifier l’existence de l’intégrale
∫ +∞

A
cos(Bx)

x2 d x,

et justifier que :

∫ +∞
A

cos(Bx)
x2 d x =

cos(AB)
A
− B

∫ +∞
AB

sin(t)
t

d t.

3/6



Maths - PC - Lycée René Cassin - Bayonne - 2025-2026

(c) En déduire, pour tout B> 0, puis pour tout B ∈ R, le calcul de l’intégrale∫ +∞
0

1− cos(Bx)
x2 d x .

(d) En déduire le calcul de l’intégrale I.

Problème 1 – Wallis et Stirling sont dans un problème

Les parties I et II sont indépendantes.

Partie I - Calcul d’un équivalent : la formule de Wallis

Pour tout entier naturel n, on considère l’intégrale wn =

∫ π/2

0

cosn(t)d t
appelée intégrale de Wallis.

1. Pourquoi ces intégrales sont-elles définies ?

2. Calculer w0 et w1.

3. Montrer que la suite (wn)n∈N est décroissante.

4. Montrer que pour tout entier naturel n, wn ¾ 0. En déduire que la suite (wn)n∈N
est convergente.

5. (a) Soit n ∈ N. À l’aide d’une intégration par parties, montrer que

wn+2 = (n+ 1)

∫ π/2

0

cosn(t) sin2(t)d t.

(b) En déduire que wn+2 =
n+1
n+2

wn.

(c) Déterminer l’expression de w2n en fonction de n pour tout n ∈ N.
6. (a) Justifier que pour tout n ∈ N,

0<
n+ 1

n+ 2
wn ¶ wn+1 ¶ wn.

(b) En déduire que wn+1 ∼ wn quand n tend vers +∞.

7. (a) Montrer que la suite de terme général un = (n+ 1)wnwn+1 est constante.
(On pourra utiliser la décroissance de (wn)n∈N.)

(b) Calculer u0. En déduire que wn ∼
p

π
2n

quand n tend vers +∞.
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8. En déduire la formule de Wallis, c’est-à-dire l’équivalent

(2n)!
22n× (n!)2

∼
n→+∞

1p
nπ
·

Partie II - Une preuve de la formule de Stirling

Pour tout n ∈ N∗, on note un =
n! en

nnpn
.

9. On considère la suite (wn)n∈N∗ définie par w1 = u1, et pour tout n ¾ 2, wn =
ln(un)− ln(un−1).
Montrer que la série

∑
wn converge.

10. En déduire que la suite (un)n∈N converge vers une limite strictement positive.

11. À l’aide de la formule de Wallis déterminer cette limite, et établir que

n! ∼
n→+∞

p
2nπ

�n

e

�n
(la formule de Stirling).

Problème 2

Soit E un R-espace vectoriel de dimension finie n¾ 2.
On rappelle qu’un hyperplan est un sous-espace vectoriel de dimension n−1 de E.
On note L (E,R) l’espace vectoriel des applications linéaires de E dans R, appelées
formes linéaires sur E.

Première partie

1. Soit ϕ un élément non nul de L (E,R). Prouver que le noyau Ker(ϕ) est un
hyperplan de E.

2. Réciproquement, si H est un hyperplan de E, montrer qu’il existe ϕ ∈ L (E,R)
tel que H= Ker(ϕ).

Soient ϕ et ψ deux éléments non nuls de L (E,R) tels que Ker(ϕ) = Ker(ψ).

3. Montrer qu’il existe v ∈ E tel que ϕ(v) = 1.

4. Soit λ = ψ(v), prouver que ψ = λϕ.

Soit H un hyperplan de E. On définit DH = {ϕ ∈ L (E,R) | H⊆ Ker(ϕ) }.
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5. Démontrer que DH est un sous-espace vectoriel de L (E,R) dont on calculera la
dimension.

Deuxième partie

On appelle transvection de E tout endomorphisme de E possédant les deux pro-
priétés suivantes :

(i) Ker( f − idE) est un hyperplan de E qu’on appellera base de f ;

(ii) Im( f − idE)⊂ Ker( f − idE).

6. Si f est une transvection de E, montrer que Im( f − idE) est une droite (on
appellera cette droite direction de f ).

Pour tout élément non nul ϕ de L (E,R) et tout vecteur non nul u ∈ Ker(ϕ), on
définit l’application linéaire fϕ,u par

fϕ,u : x 7→ fϕ,u(x) = x +ϕ(x)u.

7. Démontrer que l’application fϕ,u ainsi définie est une transvection dont on pré-
cisera la base et la direction.

8. Réciproquement, soit f une transvection, montrer qu’il existe une forme linéaire
non nulle ϕ et un vecteur non nul u ∈ E tels que f = fϕ,u.

Troisième partie

Soit GL(E) le groupe linéaire de E, c’est-à-dire l’ensemble des automorphismes (ap-
plications linéaires bijectives) de E. Le but de cette dernière partie est d’établir que

Z= { g ∈ GL(E) | ∀ f ∈ GL(E), f ◦ g = g ◦ f }
ne contient que les homothéties, c’est-à-dire que Z= {λIn | λ ∈ R∗ }.
9. Montrer que toute transvection est élément de GL(E).

10. Si f est une transvection de base H et de direction D, prouver que pour tout
g ∈ GL(E), g ◦ f ◦ g−1 est une transvection de base g(H) et de direction g(D).

11. En déduire que si g ∈ Z, alors toute droite D de E est stable par g.

12. Conclure.
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Une correction de l’exercice 1 énoncé
1. La fonction x 7→ sin x

x
est continue sur ]0,+∞[, et prolongeable par continuité

sur [0 ; +∞[ car elle tend vers 1 en 0.
On effectue une intégration par parties avec les fonctions − cos et x 7→ 1

x
qui

sont de classe C 1 sur [1 ; +∞[, et dont le produit, dominé par 1
x
, tend vers 0

en +∞.
Cela nous donne, en cas de convergence de l’une des deux intégrales qui y
apparaissent, l’égalité ci-dessous∫ +∞

1

sin x

x
d x =

�
0− − cos(1)

1

�
−
∫ +∞

1

− cos x

x2 d x

= cos(1) +

∫ +∞
1

cos x

x2 d x .

Or x 7→ cos(x)
x

est continue sur [1 ; +∞[, et dominée en +∞ par 1
x2 , donc elle

est intégrable sur [1 ; +∞[, ce qui prouve que
∫ +∞

1
cos x

x2 d x converge, donc que∫ +∞
1

sin x
x

d x converge aussi.

On peut alors conclure que la fonction x 7→ sin x
x

est prolongeable par continuité
sur [0 ; +∞[, et intégrable sur [1 ; +∞[, donc intégrable sur [0 ; +∞[.
En conclusion l’intégrale

∫ +∞
1

sin x
x

d x converge .

2. (a) Quand t −→ 0, cos(αt) =
t→0

1− α2 t2

2
+o(t2), ainsi 1−cos(αt) ∼

t→0

α2 t2

2
(α 6= 0).

Donc 1−cos(αt)
t2 e−i t x ∼

t→0

α2 t2

2t2 × 1= α2

2
, ce qui prouve que

l’application t 7→ 1−cos(αt)
t2 e−i t x est prolongeable par continuité en 0.

(b) Notons φ l’application ainsi prolongée en 0. Celle-ci est continue sur R∗
comme rapport de fonctions continues dont le dénominateur ne s’annule
pas, et est continue sur R comme prolongement par continuité en 0.
Pour tout t ¾ 1,

|φ(t)|=
����1− cos(αt)

t2 e−i t x

����¶ 1+ | cos(αt)|
t2 |e−i t x |¶ 2

t2 ,
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donc par domination, φ est intégrable sur [1 ; +∞[. On obtient
de manière identique l’intégrabilité sur ]−∞ ; −1], et on en déduit
l’intégrabilité de φ sur R , car elle est continue sur R.

3. (a) Le nombre I est a priori un nombre complexe, et

I=

∫ +∞
−∞

�
1− cos(αt)

t2 e−i t x
�

d t
(par propriété de l’intégrale conver-
gente d’une fonction complexe)

=

∫ +∞
−∞

1− cos(αt)
t2 ei t xd t.

On effectue le changement de variable u= −t, car t 7→ − t est de classe C 1

, bijective de R dans R, strictement décroissante.
Ainsi

I= −
∫ −∞
+∞

1− cos(−αu)
(−u)2

e−uxd u

=

∫ +∞
−∞

1− cos(αt)
t2 e−i t xd t = I

Ce qui prouve que I est réelle

(b) L’intégrale
∫ +∞

A
cos(Bx)

x2 d x converge car la fonction x 7→ cos(Bx)
x2 est continue

sur [A ; +∞[ (A> 0), et dominée par 1
x2 qui est intégrable sur [A ; +∞[.

On effectue le changement de variable affine t = Bx, licite car B > 0, sur
cette intégrale convergente :∫ +∞

A

cos(Bx)
x2 d x =

∫ +∞
AB

B2 cos(t)
t2

d t

B
= B

∫ +∞
AB

cos(t)
t2 d t.

On effectue ensuite une intégration par parties avec les fonctions u : t 7→ − 1
t

et v = cos, qui sont C 1 sur [A ; +∞[, et dont le produit tend vers 0 en +∞,
et on obtient finalement :∫ +∞

A

cos(Bx)
x2 d x =

cos(AB)
A
− B

∫ +∞
AB

sin(t)
t

d t.
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(c) On suppose B> 0.
Pour tout A> 0, ∫ +∞

A

1

x2 d x =
�
−1

x

�x→+∞

x
=

1

A
,

donc ∫ +∞
A

1− cos(Bx)
x2 d x =

1− cos(AB)
A

+ B

∫ +∞
AB

sin(t)
t

d t.

Comme en 2(a), on montre que

lim
A→0

1− cos(AB)
A

= 0,

et grâce à l’hypothèse initiale de l’exercice, et à la définition d’une intégrale
convergente, l’aide de 1 on a

lim
u→0

∫ +∞
u

sin(t)
t

d t =
π

2
·

Donc par passage à la limite on obtient∫ +∞
0

1− cos(Bx)
x2 d x = B

π

2
·

Si B< 0, par parité du cosinus,∫ +∞
0

1− cos(Bx)
x2 d x =

∫ +∞
0

1− cos(−Bx)
x2 d x = −B

π

2
,

et si B= 0,
∫ +∞

0
1−cos(Bx)

x2 d x = 0.

On peut donc conclure que pour tout B ∈ R,
∫ +∞

0

1− cos(Bx)
x2 d x =

|B|π
2

.
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(d) Comme I est un nombre réel,

I= Re(I) =

∫ +∞
−∞

1− cos(αt)
t2 cos(t x)d t,

puis par parité

I= 2

∫ +∞
−∞

cos(t x)− cos(t x) cos(αt)
t2 d t.

En utilisant la formule 2cos(a) cos(b) = cos(a+ b) + cos(a− b), on obtient

I=

∫ +∞
−∞

2cos(t x)− cos(t(x +α))− cos(t(x −α))
t2 d t.

Pour utiliser la formule obtenue dans la question précédente, à savoir

∀B ∈ R,

∫ +∞
0

1− cos(Bt)
t2 d t =

|B|π
2

,

on écrit

I=

∫ +∞
−∞

(1− cos(t(x +α))) + (1− cos(t(x −α)))− 2(1− cos(t x))
t2 d t

donc

I=

∫ +∞
−∞

1− cos(αt)
t2 e−i t xd t =

|x +α|+ |x −α| − 2|x |
2

π .

Une correction du problème 1 énoncé
Partie I - la formule de Wallis

1. Pour tout n ∈ N, l’intégrale wn =
∫ π/2

0
cosn(t)d t est définie car la fonction t 7→

cosn(t) est continue sur
�

0 ; π
2

�
.

2. Sans difficulté, par le théorème fondamental de l’analyse :
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ß w0 =
∫ π/2

0
1d t = π

2
,

ß et w1 =
∫ π/2

0
cos(t)d t =

h
sin(t)

iπ/2
0
= 1.

3. Soit n ∈ N.
Pour tout t ∈ [0,π/2],

0¶ cos t ¶ 1 donc 0¶ (cos t)n ¶ 1,

et

0¶ (cos t)× (cos t)n ¶ (cos t)n ¶ 1,

d’où

0¶ (cos t)n+1 ¶ (cos t)n ¶ 1.

Grâce à la croissance de l’intégrale, on en déduit que

0¶
∫ π/2

0

(cos t)n+1d t ¶
∫ π/2

0

(cos t)nd t,

c’est-à-dire 0¶ wn+1 ¶ wn .

4. La suite (wn)n¾0 est décroissante et minorée par 0, on en déduit que (wn)n¾0
converge vers une limite ℓ.

À ce propos, l’élève Chaprot pense souvent qu’une suite (ou une fonction)
décroissante et minorée par 0 converge vers 0, ce en quoi il se vautre
complaisamment dans l’erreur !
Tout ce qu’on peut dire de la limite est qu’elle est positive, car cette limite
est le plus grand des minorants, et que 0 fait partie de ces minorants.

5. (a) Soit n ∈ N∗.
On intègre par parties dans wn+2 =

∫ π/2
0
(cos t)n+2d t en posant u′(t) =

cos(t) et v(t) = (cos t)n+1.
On choisit alors u(t) = sin(t) et les fonctions u et v sont bien de classe C 1
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sur R. On peut donc effectuer une intégration par parties qui nous donne

wn+2 =

∫ π/2

0

(cos(t))n+2d t =

∫ π/2

0

cos(t)× (cos(t))n+1d t

= [ sin(t)× (cos(t))n+1
iπ/2

0

−
∫ π/2

0

sin(t)[(n+ 1)× (− sin(t))× (cos(t))n]d t

= (n+ 1)

∫ π/2

0

(sin(t))2(cos(t))nd t

On en déduit alors que

wn+2 = (n+ 1)

∫ π/2

0

�
1− (cos(t))2

�
(cos(t))nd t

= (n+ 1)

∫ π/2

0

(cos(t))nd t − (n+ 1)

∫ π/2

0

(cos(t))n+2d t

= (n+ 1)wn− (n+ 1)wn+2

ce qui donne wn+2 =
n+1
n+2

wn, après al-jabr et al-muqabalah.

LE SAVIEZ-VOUS?
al-jabr et al-muqabalah sont les premières techniques de calculs algé-
briques formalisées par le mathématicien perse Al-Khwarizmi (dont
le nom a donné le mot algorithme), fondateur de l’algèbre (mot qui
vient de al-jabr).

(b) Soit n ∈ N, alors
w2n =

2n− 1

2n
w2n−2 =

2n− 1

2n
× 2n− 3

2n− 2
w2n−4

= (. . .) =
(2n− 1)(2n− 3) · · ·3× 1

(2n)(2n− 2) · · ·4× 2
w0

=
(2n)!

(2nn!)2
× π

2
·

6. (a) On a vu que la suite de terme général wn est décroissante, donc pour tout
n ∈ N, wn+2 ¶ wn+1 ¶ wn.
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En appliquant le résultat de la question précédente, on obtient

n+ 1

n+ 2
wn ¶ wn+1 ¶ wn

D’autre part, pour tout n ∈ N, la fonction t 7→ cosn(t) est positive et non-
nulle sur [0,π/2], donc connaissant la stricte positivité de l’intégrale des
fonctions continues, on peut affirmer que wn =

∫ π/2
0
(cos(t))nd t > 0, ce qui

achève de répondre à la question.
(b) En divisant les inégalités n+1

n+2
wn ¶ wn+1 ¶ wn par le réel strictement positif

wn, on obtient

n+ 1

n+ 2
¶

wn+1

wn
¶ 1.

Comme lim
n→+∞

n+1
n+2

= 1, on conclut par le principe d’encadrement que

lim
n→+∞

wn+1

wn
= 1, autrement dit que wn+1 ∼ wn.

7. (a) Soit n ∈ N. L’égalité wn+2 =
n+1
n+2

wn donne

(n+ 2)wn+2 = (n+ 1)wn.

En multipliant les deux membres de cette égalité par wn+1, on obtient

(n+ 2)wn+1wn+2 = (n+ 1)wnwn+1,

c’est-à-dire un+1 = un. La suite de terme général un est donc constante.
(b) ß On a calculé dans la première question w0 =

π
2

et w1 = 1, donc u0 =
(0+ 1)w0w1 =

π
2
.

ß Ainsi la suite (un)n∈N étant constante, on en déduit que pour tout n ∈ N,
un =

π
2
, donc que (n+ 1)wnwn+1 =

π
2
.

D’autre part, wn+1 ∼n→+∞wn, et n+ 1 ∼
n→+∞ n, donc

(n+ 1)wnwn+1 ∼n→+∞ n(wn)
2.

Ainsi n(wn)2 ∼n→+∞
π
2
, donc w2

n ∼n→+∞
π
2n
, et, comme wn > 0 pour tout

entier naturel n, on en déduit par la racine carrée le résultat demandé
wn ∼n→+∞

p
π
2n
.
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8. On en déduit en particulier que w2n ∼n→+∞
p

π
4n
=
p
π

2
p

n
.

Or w2n =
(2n)!
(2nn!)2

× π
2
, donc

(2n)!

(2nn!)2
× π

2
∼

n→+∞

p
π

2
p

n

d’où

(2n)!

22n (n!)2
∼

n→+∞
1p
nπ
·

Partie II - Une preuve de la formule de Stirling

9. (a) Quand x tend vers 0,

1

1− x
= 1+ x + x2+ o(x2),

et ln(1+ x) = x − 1

2
x2+

1

3
x3+ o(x3)

On obtient, sur le brouillon, la partie polynomiale x + 1
2

x2 + 1
3

x3 du
développement limité de − ln(1− x) (qui est la primitive de 1

1−x
) en

intégrant la partie polynomiale du développement limité de 1
1−x

, puis
on remplace x par −x.

(b) Pour tout entier n supérieur ou égal à 2,

un

un−1
= e×

�
1− 1

n

�n− 1
2

,
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et

wn = ln
�

un

un−1

�
= ln

 
e×
�

1− 1

n

�n− 1
2

!
= 1+

�
n− 1

2

�
ln
�

1− 1

n

�
=

n→+∞1+
�

n− 1

2

��
−1

n
− 1

2n2 −
1

3n3 + o
�

1

n2

��
(car 1

n
→ 0)

=
n→+∞1+ (−1) +

1

2n
− 1

2n
+

1

4n2 −
1

3n2 + o
�

1

n3

�
=

n→+∞−
1

12n2 + o
�

1

n2

�
.

Donc wn ∼n→+∞− 1
12n2 = O

n→+∞
�

1
n2

�
, d’où par le critère de domination,

(wn)n∈N est sommable, donc
∑

wn converge.

10. Grâce à la relation suite-série, de la convergence de la série de terme général
wn = ln(un)− ln(un−1), on peut déduire la convergence de la suite (ln(un))n∈N.

Ou bien directement, avec la définition de la convergence d’une série
et les sommes télescopiques, on a

N∑
n=1

wn = ln(uN)− ln(u1) = ln(uN)

qui nous permet de conclure.

Donc ln(un) tend vers une limite que l’on note l, d’où, en composant par l’ex-
ponentielle, on conclut que (un)n∈N converge vers ℓ = el qui est bien une limite
strictement positive.

11. La formule de Wallis établie plus haut donne

(2n)!

22n (n!)2
∼

n→+∞
1p
nπ
·
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dont on déduit que

(2n)!

(n!)2
∼

n→+∞
22n

p
nπ
·

On déduit de la question précédente que un ∼n→+∞ℓ, autrement dit que

n! en

nnpn
∼

n→+∞ℓ

qui nous donne

n! ∼
n→+∞ℓ×

nnpn

en = ℓ×pn
�n

e

�n
.

Ainsi

(2n)!

(n!)2
∼

n→+∞
ℓ
p

2n
�

2n
e

�n�
ℓ
p

n
�

n
e

�n�2 =
22np2

ℓ
p

n
·

Par conséquent,

22n

p
nπ
∼

n→+∞
22np2

ℓ
p

n

dont on déduit que ℓ=
p

2π .
On aboutit comme demandé à la formule de Stirling :

n! ∼
n→+∞

p
2π×pn

�n

e

�n
=
p

2nπ
�n

e

�n
.

Une correction du problème 2 énoncé
Première partie

1. L’application ϕ est linéaire de E dans R, donc Im(ϕ) est inclus dans R, d’où
rg(ϕ)¶ dim(R) = 1.
On sait aussi qu’elle est non nulle, donc rg(ϕ)¾ 1.
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Par conséquent rg(ϕ) = 1, puis par le théorème du rang, dim(Ker(ϕ)) =
dim(E)− 1, autrement dit Ker(ϕ) est un hyperplan de E.

2. Réciproquement, soit H un hyperplan de E, et B = �e1, . . . , en−1, en
�
une base

de E adaptée à H, autrement dit une base de E telle que
�
e1, . . . , en−1

�
est une

base de H.
On considère la forme linéaire ϕ sur E définie par

ϕ(e1) = . . .= ϕ(en−1) = 0 et ϕ(en) = 1.

Cette forme linéaire est non nulle, donc (on l’a vu au-dessus) dim(Ker(ϕ)) =
n− 1= dim(H).
Mais ϕ(e1) = . . . = ϕ(en−1) = 0, donc e1, . . . , en−1 sont dans Ker(ϕ), et ce der-
nier étant un sous-espace vectoriel, on en déduit que H = Vect

�
e1, . . . , en−1

� ⊂
Ker(ϕ).
On conclut par égalité des dimensions que H= Ker(ϕ), ce qui prouve qu’il existe
une forme linéaire dont H est le noyau. linéaire

3. On considère ϕ et ψ deux formes linéaires non nulles sur E qui ont le même
noyau.
On sait que ϕ est non nulle, donc Im(ϕ) = R, et par conséquent 1 ∈ Im(ϕ).
Ainsi il existe v ∈ E tel que ϕ(v) = 1.

4. ß Montrons d’abord que Ker(ϕ) et Vect (v) sont supplémentaires dans E.

On sait déjà que Ker(ϕ) est un hyperplan de E. De plus v 6= 0E puisque
ϕ(v) = 1 6= 0, donc

dim(Ker(ϕ)) + dim(Vect (v)) = n− 1+ 1= n= dim(E).

De plus si x ∈ Ker(ϕ) ∩ Vect (v), alors il existe α ∈ R tel que x = αv, et
x ∈ Ker(ϕ) donc ϕ(x) = 0.
Mais ϕ(x) = ϕ(αv) = αϕ(v) = α, donc α = 0, d’où x = 0E.
Ainsi Ker(ϕ)∩ Vect (v) = {0E }.

On a donc prouvé que E= Ker(ϕ)⊕ Vect (v).
ß Soit x ∈ E.

D’après le résultat précédent, il existe x0 ∈ Ker(ϕ) et α ∈ R tels que x =
x0+αv.
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Ainsi ϕ(x) = ϕ(x0) +αϕ(v) = α, et de même

ψ(x) = ψ(x0) +αψ(v)

= αψ(v)
(car x0 ∈ Ker(ϕ) et
Ker(ϕ) = Ker(ψ))

= αλ
(car on a convenu que
ψ(v) = λ)

= λϕ(x).

Ceci étant vrai pour tout x ∈ E, on peut conclure que ϕ = λψ.
5. ß La forme linéaire nulle x ∈ E 7→ 0 a pour noyau E qui contient évidemment

H, donc elle est dans DH qui est alors non vide.
ß Soient ϕ et ψ dans DH, λ et µ deux réels, alors pour tout x ∈ H,

(λϕ +µψ) (x) = λϕ(x) +µψ(x)

= 0E
(car H ⊂ Ker(ϕ) et H ⊂
Ker(ψ)),

donc H⊂ Ker (λϕ +µψ), ce qui prouve que λϕ +µψ ∈ DH.
Donc DH est un sous-espace vectoriel de L (E,R).
ß On sait grâce à la question 2 qu’il existe une forme linéaire ϕ0 telle que

Ker(ϕ0) = H. En particulier ϕ0 ∈ DH, et DH étant un sous-espace vectoriel,
Vect (ϕ0)⊂ DH.

ß Réciproquement. Pour tout ϕ ∈ DH,
si ϕ est nulle alors ϕ = 0ϕ0,
sinon Ker(ϕ) = H par inclusion et égalité des dimensions, donc on a l’éga-
lité Ker(ϕ) = Ker(ϕ0). Mais alors le résultat de la question 4 nous permet
d’affirmer qu’il existe λ ∈ R, tel que ϕ = λϕ0, donc que ϕ ∈ Vect (ϕ0)

On a prouvé que DH = Vect (ϕ0) avec ϕ0 6= 0, donc que DH est de dimension 1.

Deuxième partie

6. Si f est une transvection de E, alors Ker( f − idE) est un hyperplan de E, donc
par le théorème du rang, Im( f −λ idE) est de dimension 1.

7. Soit ϕ une forme linéaire non nulle, u ∈ Ker(ϕ) \ {0E }, et fϕ,u : x 7→ x +ϕ(x)u.
Pour ne pas alourdir la notation, notons simplement f l’application fϕ,u, et mon-
trons que f est une transvection.
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ß Je vous laisse prouver que f est linéaire en utilisant la linéarité de ϕ.
ß Soit x ∈ E, alors f (x) = x +ϕ(x)u, et f (x)− x = ϕ(x)u, donc

x ∈ Ker( f − idE)⇐⇒ ( f − idE)(x) = 0E⇐⇒ f (x)− x = 0E

⇐⇒ ϕ(x)u= 0E

⇐⇒ ϕ(x) = 0 (car u 6= 0E)

⇐⇒ x ∈ Ker(ϕ).

On a prouvé par équivalences successives que Ker( f − idE) = Ker(ϕ), et on
sait que Ker(ϕ) est un hyperplan en tant que noyau d’une forme linéaire non
nulle, donc Ker( f − idE) est bien un hyperplan.

ß Si y ∈ Im( f − idE), alors il existe x ∈ E tel que

y = ( f − idE)(x) = f (x)− x = ϕ(x)u,

donc Im( f − idE)⊂ Vect (u).
On sait de plus que Im( f − idE) est de dimension 1, comme Vect (u), d’où
l’égalité Im( f − idE) = Vect (u).
Or

( f − idE)(u) = f (u)− u= ϕ(u)u= 0E (car u ∈ Ker(ϕ)),

donc u ∈ Ker( f − idE), d’où

Im( f − idE) ⊂ Vect (u) ⊂ Ker( f − idE) .

ß On peut donc conclure que fϕ,u est une transvection de base Ker(ϕ) et de
direction Vect (u).

8. Soit f une transvection de E.
Alors Im( f − idE) est une droite vectorielle, donc il existe un vecteur non nul
u ∈ E tel que Im( f − idE) = Vect (u).
Ainsi pour tout x ∈ E, f (x)− x = ( f − idE)(x) est dans Im( f − idE), et u forme
à lui tout seul une base de Im( f − idE), donc il existe un unique réel λ ∈ R, tel
que f (x)− x = λu.
Ce réel λ dépend de x, notons-le ϕ(x), et montrons que l’application x 7→ ϕ(x)
est une forme linéaire. Pour cela, prenons x , y ∈ E et λ,µ deux réels.
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Alors par définition de ϕ :

f (λx +µy)− (λx +µy) = ϕ(λx +µy)v,

mais d’autre part, par linéarité de f :

f (λx +µy)− (λx +µy) = λ( f (x)− x) +µ( f (y)− y)

= λϕ(x)v +µϕ(y)v

= (λϕ(x) +µϕ(y)) v,

donc la différence donne

0E =
�
ϕ(λx +µy)− (λϕ(x) +µϕ(y))

�
v,

et comme v 6= 0E, on peut conclure ce qu’on voulait obtenir

ϕ(λx +µy) = λϕ(x) +µϕ(y).

Ainsi ϕ est une forme linéaire de E.
On ainsi prouvé que f = fϕ,u.

9. Soit f une transvection.
Alors la question précédente (dont il fallait prendre l’initiative dans l’énoncé ori-
ginal) permet d’affirmer qu’il existe une forme linéaire ϕ et un vecteur non nul
u ∈ E tel que f = x 7→ x +ϕ(x)u.
On rappelle aussi que Vect (u) = Im( f − idE)⊂ Ker( f − idE), donc f (u) = u, d’où
ϕ(u) = 0.
On en déduit que

x ∈ Ker( f )⇐⇒ x +ϕ(x)u= 0E⇐⇒ x = −ϕ(x)u
=⇒ ϕ(x) = −ϕ(x)ϕ(u) (en composant par ϕ)

= 0 (car ϕ(u) = 0)

=⇒ x = 0E (car x = −ϕ(x)u)
donc Ker( f ) = {0E } ce qui prouve que f ∈ GL(E).

Rappelons que E est de dimension finie, donc un endomorphisme de
E est bijectif si, et seulement si, il est injectif, si, et seulement si, il est
surjectif
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10. Soit f une transvection de base H= Ker( f − idE) et de direction D= Im( f − idE),
et g ∈ GL(E). Notons h= g ◦ f ◦ g−1.

ß On peut déjà affirmer que f est un endomorphisme de E comme composée
d’endomorphismes.

ß Soit x ∈ E,

x ∈ Ker(h− idE)⇐⇒ h(x) = x ⇐⇒ g ◦ f ◦ g−1(x) = x

⇐⇒ f ◦ g−1(x) = g−1(x)

(en composant à gauche
par g−1, l’équivalence
étant assurée par la
bijectivité)

⇐⇒ f
�

g−1(x)
�
= g−1(x)

⇐⇒ g−1(x) ∈ Ker( f − idE) = H

⇐⇒ x ∈ g(H)
(en composant par g, qui
est bijectif),

donc Ker(h− idE) = g(H).
Comme g est un automorphisme de E, il conserve la dimension (en vrai il
transforme une base de H en base de g(H)), donc Ker(h− idE) = g(H) est
aussi un hyperplan de E.

ß Soit y ∈ E,

y ∈ Im(h− idE)⇐⇒∃x ∈ E, y = (h− idE)(x) = h(x)− x

or

y = h(x)− x ⇐⇒ y = g ◦ f ◦ g−1(x)− x

⇐⇒ y = g
�

f ◦ g−1(x)
�− g

�
g−1(x)

�
(car g ◦ g−1 = idE)

⇐⇒ y = g
�

f ◦ g−1(x)− g−1(x)
�

(par linéarité de g)

⇐⇒ y = g
�

f (g−1(x))− g−1(x)
�
= g

�
( f − idE)(g

−1(x))
�

=⇒ y ∈ g (Im( f − idE)) = g(D).

Donc Im(h− idE)⊂ g(D).
On a du se contenter d’une implication à la dernière étape, donc on ne
peut pas conclure l’égalité des ensembles, mais seulement l’inclusion
de Im (h− idE) dans g(D).
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Mais on vu que Ker(h− idE) est un hyperplan, donc par le théorème du rang
Im(h− idE) est de dimension 1 ; et D est aussi une droite vectorielle, donc
g(D) aussi car g est un automorphisme.
On peut donc conclure que Im(h− idE) = g(D) ce qui achève de répondre à
la question.

11. Si g ∈ Z, alors pour toute transvection f , dont on vu qu’elle appartient à GL(E),
on doit avoir g◦ f = f ◦g, donc en composant par g−1, on a f = g−1◦ f ◦g. Ainsi
la direction g(D) de g−1 ◦ f ◦ g est la même que la direction D de f , autrement
dit g(D) = D.

12. De la question précédente on déduit en reprenant la solution de cet exercice que
toute application de Z est forcément une homothétie.
Et comme réciproquement les homothéties commutent avec tous les endomor-
phismes, on peut conclure que Z est l’ensemble des homothéties (non-nulles
puisque Z⊂ GL(E)) :

Z= {λ idE | λ ∈ R∗ } .
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